Openbravo-rus.ru

Образование по русски
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Машинное обучение кластеризация

Кластеризация в машинном обучении

Введение в кластеризацию

Это в основном тип обучения без присмотра . Метод обучения без учителя — это метод, в котором мы рисуем ссылки из наборов данных, состоящих из входных данных без помеченных ответов. Как правило, он используется как процесс для нахождения значимой структуры, поясняющих процессов, генеративных признаков и группировок, присущих набору примеров.
Кластеризация — это задача разделения популяции или точек данных на несколько групп, чтобы точки данных в тех же группах были больше похожи на другие точки данных в той же группе и отличались от точек данных в других группах. Это в основном набор объектов на основе сходства и различия между ними.

Например, точки данных на графике ниже, сгруппированные вместе, можно классифицировать в одну группу. Мы можем различить кластеры, и мы можем определить, что есть 3 кластера на рисунке ниже.

Необязательно, чтобы кластеры были сферическими. Такие как :

Данные плотности DBSCAN

Эти точки данных кластеризуются, используя базовую концепцию, согласно которой точка данных находится в пределах данного ограничения от центра кластера. Для расчета выбросов используются различные дистанционные методы и приемы.

Почему кластеризация?

Кластеризация очень важна, так как она определяет внутреннюю группировку среди присутствующих немеченых данных. Нет никаких критериев для хорошей кластеризации. Это зависит от пользователя, какие критерии они могут использовать, которые удовлетворяют их потребности. Например, нам может быть интересно найти представителей однородных групп (сокращение данных), найти «естественные кластеры» и описать их неизвестные свойства («естественные» типы данных), найти полезные и подходящие группировки («полезные» классы данных) или в поиске необычных объектов данных (обнаружение выбросов). Этот алгоритм должен делать некоторые предположения, которые составляют сходство точек, и каждое предположение создает разные и одинаково допустимые кластеры.

Методы кластеризации:

1. Методы, основанные на плотности. Эти методы рассматривают кластеры как плотную область, имеющую некоторое сходство и отличающуюся от нижней плотной области пространства. Эти методы обладают хорошей точностью и способностью объединять два кластера. Пример DBSCAN (пространственная кластеризация приложений с шумом на основе плотности) , OPTICS (точки упорядочения для определения структуры кластеризации) и т. Д.

2. Методы, основанные на иерархии : кластеры, сформированные в этом методе, формируют древовидную структуру на основе иерархии. Новые кластеры формируются с использованием ранее сформированного. Он делится на две категории
-> Агломерация ( подход снизу вверх )
-> Разделительный ( подход сверху вниз ).
примеры CURE (кластеризация с использованием представителей), BIRCH (сбалансированная итеративная редукционная кластеризация и использование иерархий) и т. д.

3. Методы разбиения: Эти методы разбивают объекты на k кластеров, и каждый раздел образует один кластер. Этот метод используется для оптимизации функции подобия объективного критерия, например, когда расстояние является основным параметром, например, K-средних, CLARANS (кластеризация больших приложений на основе рандомизированного поиска) и т. Д.

4. Методы на основе сетки: в этом методе пространство данных формулируется в конечное число ячеек, которые образуют решетчатую структуру. Все операции кластеризации, выполняемые на этих сетках, выполняются быстро и не зависят от количества объектов данных, например, STING (статистическая информационная сетка), волновой кластер, CLIQUE (CLustering In Quest) и т. Д.

Алгоритмы кластеризации:

Алгоритм кластеризации K-средних — это самый простой алгоритм обучения без контроля, который решает проблему кластеризации. Алгоритм K-средств разбивает n наблюдений на k кластеров, где каждое наблюдение принадлежит кластеру, а ближайшее среднее значение служит прототипом кластера.

Применение кластеризации в разных областях

1. Маркетинг: он может быть использован для характеристики и выявления сегментов клиентов в маркетинговых целях.
2. Биология: может использоваться для классификации среди различных видов растений и животных.
3. Библиотеки: используется для объединения разных книг на основе тем и информации.
4. Страхование: используется для подтверждения клиентов, их полисов и выявления мошенничества.
5. Городское планирование: оно используется для создания групп домов и изучения их стоимости на основе их географического положения и других факторов.
6. Исследования землетрясений. Изучив районы, пострадавшие от землетрясения, мы можем определить опасные зоны.

Машинное обучение: методы и способы

  • Ключевые слова :
  • ИТ-университет
  • Машинное обучение
  • Цифровая трансформация

Согласно результатам международного исследования Microsoft, 94% руководителей считают, что технологии искусственного интеллекта важны для решения стратегических задач их организаций. При этом 27% опрошенных уже внедрили соответствующие технологии в ключевые бизнес-процессы, еще 46% ведут пилотные проекты.

Россия, благодаря традиционно сильной математической школе не отстает от мировых тенденций. И если судить по докладам на конференции «Технологии машинного обучения. Искусственный интеллект и нейросети: инструменты и опыт реальных проектов», организованной издательством «Открытые системы», применение средств ИИ в нашей стране уже стало если не обыденностью, то достаточно распространенным способом не только оптимизировать, но и радикально поменять бизнес-процессы.

Поскольку разнообразие методов и способов обучения искусственного интеллекта не меньше, чем у интеллекта естественного, то, прежде чем начинать проект в этой области, стоит ознакомиться с методами и способами машинного обучения, их возможностями, сферами применения и ограничениями. Это поможет эффективнее распорядиться отпущенными на проект ресурсами и не пасть жертвой нынешнего ажиотажа вокруг машинного обучения и искусственного интеллекта.

Способы машинного обучения

Обучение с учителем (Supervised learning)

Этот способ оптимален, если вы знаете, чему хотите научить машину. Вы можете познакомить компьютер с огромной обучающей выборкой данных и варьировать параметры до тех пор, пока не получите на выходе ожидаемые результаты. Затем можно уточнить, чему научилась машина, заставив ее спрогнозировать результат для контрольных данных, с которыми компьютер еще не сталкивался.

Чаще всего обучение с учителем применяется для задач классификации и прогнозирования. Обучение с учителем можно использовать при определении финансового риска частных лиц и организаций на основе имеющихся сведений о прошлой финансовой активности, можно неплохо прогнозировать покупательское поведение с учетом прежних закономерностей.

Обучение без учителя (Unsupervised learning)

При обучении без учителя машина исследует набор данных и выявляет скрытые закономерности корреляции между различными переменными. Этот способ можно использовать для группирования данных в кластеры на основании одних только их статистических свойств.

Хорошее применение обучения без учителя — алгоритм кластеризации, используемый для вероятностного соединения записей. Определяются связи между элементами данных, и на основании этих отношений выявляются связи между людьми и организациями в физическом или виртуальном мире.

Вариант особенно полезен компаниям, которым нужно, например, объединить данные из разнородных источников или по различным структурным подразделениям, чтобы построить общую картину клиентуры.

Обучение без учителя также можно использовать для анализа тональности высказываний, чтобы определять эмоциональное состояние людей на основе их постов в социальных сетях, сообщений электронной почты и других записей. Сегодня, в частности, в компаниях, специализирующихся на финансовых услугах, с помощью обучения без учителя все чаще оценивают уровень удовлетворенности клиентов.

Обучение с частичным привлечением учителя (Semi-Supervised learning)

Это гибрид обучения с учителем и без. Разметив небольшую часть данных, учитель дает машине понять, каким образом кластеризовать остальное.

Способ можно применять для распознавания мошенничеств с попытками выдать себя за другого. Мошенничества можно классифицировать как аномалию на фоне обычной активности. Методы машинного обучения с частичным привлечением учителя позволяют создавать модели, распознающие такие аномалии. Соответствующие системы нередко применяются для выявления попыток мошенничеств при онлайн-сделках.

Обучение с частичным привлечением учителя также можно применять в случаях, когда есть готовые наборы частично размеченных данных, что характерно для крупных предприятий. В Amazon, например, улучшили способности цифрового ассистента Alexa понимать естественный язык, обучая алгоритмы искусственного интеллекта на сочетаниях размеченных и неразмеченных данных. Благодаря этому удалось повысить точность ответов Alexa.

Обучение с подкреплением (Reinforcement learning)

При обучении с подкреплением машине позволяют взаимодействовать с окружением (например, сбрасывать бракованную продукцию с конвейера в корзину) и «вознаграждают», когда она правильно выполняет задание. Автоматизировав подсчет вознаграждений, можно дать возможность машине обучаться самостоятельно.

Одно из применений обучения с подкреплением — сортировка товаров в розничных магазинах. Некоторые продавцы экспериментируют с роботизированными системами сортировки предметов одежды, обуви и аксессуаров. Роботы, используя обучение с подкреплением и глубинное обучение, определяют, насколько сильно нужно сдавить предмет при хватании и какой хват будет наилучшим.

Разновидность этого способа, глубинное обучение с подкреплением, хорошо подходит для автономного принятия решений в случаях, когда возможностей обучения с учителем и без недостаточно.

Глубинное обучение (Deep learning)

Глубинное обучение может проходить как без учителя, так и с подкреплением. При глубинном обучении частично имитируются принципы обучения людей — используются нейронные сети для все более подробного уточнения характеристик набора данных.

Глубинные нейронные сети применяются, в частности, для ускорения скрининга больших объемов данных при поиске лекарственных средств. Такие нейросети способны обрабатывать множество изображений за короткое время и извлечь больше признаков, которые модель в конечном счете запоминает.

Читать еще:  Администратор соц сетей обучение бесплатно

Этот способ тоже широко применяется для борьбы с мошенничествами, так как улучшает точность распознавания благодаря автоматизации.

Глубинное обучение может использоваться в автомобильной отрасли при выполнении ремонта и профилактического обслуживания.

Методы машинного обучения

Нейронные сети

Нейронные сети имитируют структуру головного мозга: каждый искусственный нейрон соединяется с несколькими другими нейронами. Нейросети имеют многослойную структуру: нейроны на одном слое передают данные нескольким нейронам на следующем и т. д. В конечном счете данные достигают выходного слоя, где сеть выдает предположение о том, как решить задачу, классифицировать объект и т. п.

Нейросети применяются в целом ряде отраслей. В здравоохранении их используют при анализе медицинских снимков с целью ускорения диагностических процедур и поиска лекарств. В телекоммуникационной отрасли и медиаиндустрии нейросети можно применять для машинного перевода, распознавания мошенничеств и предоставления услуг виртуальных ассистентов. В финансовой отрасли их используют для распознавания мошенничеств, управления портфелями и анализа риска. В розничной торговле — для избавления от очередей в кассу и для персонализации обслуживания покупателей.

Дерево решений

Алгоритм дерева решений классифицирует объекты, отвечая на «вопросы» об их атрибутах, расположенные в узловых точках. В зависимости от ответа выбирается одна из ветвей, и так до тех пор, пока не будет достигнут «лист» — окончательный ответ.

Среди применений дерева решений — платформы управления знаниями для клиентского обслуживания, прогнозного назначения цен и планирования выпуска продукции.

В страховой компании дерево решений поможет выяснить, какие виды страховых продуктов и премий лучше задействовать с учетом возможного риска. Используя данные о местонахождении и сведения о страховых случаях с учетом погодных условий, система может определять категории риска на основании поданных требований и затраченных сумм. Затем, используя модели, система будет оценивать новые заявления о страховой защите, классифицируя их по категории риска и возможному финансовому ущербу.

«Случайный лес»

Чтобы одиночное дерево решений давало точные результаты, его нужно обучать, алгоритм же случайного леса (random forest) использует «комитет» случайным образом созданных решающих деревьев с разными наборами атрибутов и дает возможность им проголосовать, чтобы выбрать самый популярный класс.

Случайный лес — универсальный, быстро обучаемый механизм для обнаружения связей внутри набора данных. В пример можно привести нежелательные массовые рассылки, создающие проблемы не только пользователям, но и провайдерам Интернета, которым из-за спама приходится иметь дело с повышенной нагрузкой на серверы. Для борьбы с проблемой были разработаны автоматизированные методы фильтрации спама, которые с помощью ансамбля решающих деревьев быстро и эффективно определяют нежелательные письма.

Среди других применений — диагностика заболеваний путем анализа медицинской карты пациента, распознавание банковских мошенничеств, прогнозирование числа звонков в колл-центрах и прогнозирование вероятности прибыли и убытка при покупке определенных акций.

Кластеризация

Кластеризация — это группирование элементов данных, имеющих сходные характеристики, с помощью статистических алгоритмов. Это метод обучения без учителя, который можно использовать для решения задач классификации.

Примеры: сегментирование покупательской аудитории в зависимости от характеристик для уточнения адресации маркетинговых кампаний; рекомендации новостей конкретным читателям; помощь в работе правоохранительным органам.

Кластеризация также действенна, когда в сложных наборах данных нужно обнаружить группы, которые трудно заметить без специальных средств. Примеры — от группирования похожих документов в базе данных до обнаружения по криминальным новостям территорий с повышенным уровнем преступности.

Поиск ассоциативных правил

Поиск ассоциативных правил — это метод обучения без учителя, позволяющий находить отношения между переменными. Используется в движках выдачи рекомендаций — именно этот метод применяется во многих интернет-магазинах для составления фразы «Вместе с этим товаром обычно покупают…».

Конкретный пример — повышение продаж в магазине деликатесов. Изучив покупательское поведение путем поиска ассоциативных правил, можно предлагать специальную упаковку и наборы для праздников и других особых случаев. Ассоциативные правила позволяют выяснить, когда и при каких обстоятельствах покупатели приобретают те или иные сочетания товаров. Используя сведения о прошлых покупках и времени их совершения, можно составить программу скидок и сформировать индивидуальные предложения с расчетом на повышение продаж.

— Bob Violino. Machine learning: When to use each method and technique. InfoWorld. SEP 6, 2018

Поделитесь материалом с коллегами и друзьями

Профессия Data Scientist: машинное обучение

Вы научитесь создавать аналитические системы и использовать алгоритмы машинного обучения, освоите работу с нейросетями. Наполните портфолио и получите престижную профессию.

Записаться на курс

  • Длительность 13 месяцев
  • Помощь в трудоустройстве
  • 7 курсов в одной программе
  • Доступ к курсу навсегда

На рынке не хватает специалистов по Data Science

  • 2 300 компаний сейчас ищут специалистов в Data Science & Machine Learning
  • 80 000 рублей зарплата начинающего специалиста

Данные сайта hh.ru

Кому подойдёт этот курс

Новичкам в IT

Вы получите базовые навыки по аналитике, статистике и математике, которые откроют путь к карьере в Data Science и Machine Learning.

Программистам

Вы прокачаете свои знания и навыки в программировании на Python. Научитесь использовать алгоритмы машинного обучения, решать бизнес-задачи — и усилите портфолио мощными проектами.

Менеджерам и владельцам бизнеса

Научитесь использовать данные для построения прогнозов и оптимизации бизнес-процессов и переведёте компанию на новый уровень.

Чему вы научитесь

Программировать на Python

Визуализировать данные

Работать с библиотеками и базами данных

Применять нейронные сети для решения реальных задач

Строить модели машинного обучения

Писать рекомендательные системы

От первого урока к работе мечты

Студенты и выпускники Skillbox получают индивидуальную поддержку от Центра карьеры на протяжении всего обучения — от помощи с выбором профессии до выхода на работу мечты. Вот как это происходит.

С каждым уроком ваш профессиональный уровень растёт и вы можете планировать карьеру уже во время обучения.

Реакция потенциального работодателя зависит от того, как вы подаёте себя в резюме. Мы дадим советы по его составлению и поможем написать резюме, подающее вас лучшим образом.

Выбираете лучшую вакансию

Мы экономим ваше время — подбираем подходящие вакансии и договариваемся об интервью с работодателем. Вам нужно только пройти собеседование.

Начинаете карьеру мечты

Вы успешно проходите собеседование, выходите на работу и сразу начинаете выполнять задачи.

Записаться на курс или получить бесплатную консультацию

Похоже произошла ошибка. Попробуйте отправить снова или перезагрузите страницу.

Ваша заявка успешно отправлена

Как проходит обучение

Изучаете тему

В курсе — практические видеоуроки.

Выполняете задания

В том темпе, в котором вам удобно.

Работаете с наставником

Закрепляете знания и исправляете ошибки.

Защищаете дипломную работу

И дополняете ею своё портфолио.

Программа

Вас ждут 7 курсов с разным уровнем сложности, знание которых можно приравнять к году работы.

  1. Аналитика. Начальный уровень
  1. Введение.
  2. Основы Python: базовые структуры данных.
  3. Основы Python: циклы и условия.
  4. Основы Python: функции.
  5. Основы Python: классы и объекты.
  6. Основы Python: исключения.
  7. Библиотека NumPy. Часть 1.
  8. Библиотека NumPy. Часть 2.
  9. Библиотека pandas. Часть 1.
  10. Библиотека pandas. Часть 2.
  11. Визуализация данных с помощью matplotlib.
  12. Чтение и запись данных.
  13. Введение в SQL.
  14. Работа со строками.
  1. Основы статистики и теории вероятностей.
  1. Основные концепции Machine Learning (ML).
  2. Жизненный цикл ML-проекта.
  3. Регрессия.
  4. Классификация.
  5. Кластеризация
  6. Дополнительные техники.
  7. Знакомство с Kaggle.
  1. Базовые математические объекты и SymPy. Дроби и преобразования.
  2. Базовые математические объекты и SymPy. Необходимые функции и некоторые дополнительные объекты.
  3. Функции одной переменной, их свойства и графики.
  4. Интерполяция и полиномы.
  5. Аппроксимация и преобразования функций.
  6. Функции нескольких переменных, их свойства и графики.
  7. Линейные функции.
  8. Матрицы и координаты.
  9. Линейные уравнения.
  10. Производная функции одной переменной.
  11. Производная по направлению и градиент + частные производные.
  12. Линейная регрессия.
  13. Собственные векторы и значения. Определитель.
  14. Разложения матриц.
  1. Введение в нейронные сети.
  2. Обучение нейронных сетей.
  3. Нейронные сети на практике.
  4. Свёрточные нейросети для задачи классификации изображений.
  5. Семантическая сегментация. Часть 1. Слабая локализация и полносвёрточные нейросети (FCN).
  6. Семантическая сегментация. Часть 2. Продвинутые архитектуры FCN для семантической сегментации.
  7. Детектирование объектов.
  8. От дискриминативных моделей к генеративным. Style transfer.
  9. Генеративные состязательные сети.
  10. Введение в NLP.
  11. NLP на нейросетях. Рекуррентные нейросети, классификация текстов.
  12. NLP на нейросетях. Языковые модели, Attention, Transformer.
  13. Обучение с подкреплением. Q-Learning.
  14. Обучение с подкреплением. Deep Q-Learning.
  15. Ускорение и оптимизация нейронных сетей.
  16. Внедрение в DL моделей в Production.
  17. Рекомендательные системы.
  18. Вывод моделей машинного обучения в production, post production и мониторинг.
  1. Как стать первоклассным программистом.
  2. Как искать заказы на разработку.
  3. Личный бренд разработчика.
  4. Photoshop для программиста.
  5. Вёрстка email-рассылок. Советы на реальных примерах.
  6. The state of soft skills.
  7. Как мы создавали карту развития для разработчиков.
  8. Как общаться по email и эффективно работать с почтой.
  9. Повышение своей эффективности.
  10. Спор о первом языке программирования.
  11. Саморазвитие: как я не усидел на двух стульях и нашёл третий.
  12. Data-driven подход к продуктивности — инсайты из данных миллиона людей.
  1. IT Resume and CV.
  2. Job interview: questions and answers.
  3. Teamwork.
  4. Workplace communication.
  5. Business letter.
  6. Software development.
  7. System concept development and SRS.
  8. Design.
  9. Development and Testing.
  10. Deployment and Maintenance.
Читать еще:  Обучение технологиям клиентоориентированности

Уже учились на каком-то курсе из программы?

Скажите об этом менеджеру — за этот курс платить не придётся!

Получить полную программу курса и консультацию

Похоже произошла ошибка. Попробуйте отправить снова или перезагрузите страницу.

Гид по структуре машинного обучения

Контент-маркетолог Мария Пушикова специально для блога Нетологии перевела статью Charles-Antoine Richard о том, что такое машинное обучение и какие методы машинного обучения существуют.

Совсем недавно мы обсуждали необходимость использования методов машинного обучения в бизнесе. Это подтолкнуло меня изучить основы методов машинного обучения, во время чего я сознал: большая имеющейся часть информации направлена на разработчиков или специалистов по Big Data.

Поэтому я решил, что читателям будет интересно прочесть объяснение методов машинного обучения от человека нетехнической специальности.

Машинное обучение — это…

Вот самое простое определение, которое я нашел:

Машинное обучение — это «[…] класс методов искусственного интеллекта, которые позволяют улучшить результаты работы компьютеров путем обучения на известных данных», — Berkeley.

Теперь давайте разложим все по полочкам, чтобы выстроить основы знаний в области машинного обучения.

…подраздел искусственного интеллекта (ИИ)

ИИ — это наука и технология по разработке мероприятий и методов, позволяющих компьютерам успешно выполнять задачи, которые обычно требуют интеллектуального осмысления человека. Машинное обучение — часть этого процесса: это методы и технологии, с помощью которых можно обучит компьютер выполнять поставленные задачи.

…способ решения практических задач

Методы машинного обучения все еще в развитии. Некоторые уже изучены и используются (рассмотрим дальше), но ожидается, что со временем их количество будет только расти. Идея в том, что совершенно разные методы используются для совершенно разных компьютеров, а различные бизнес-задачи требуют различных методов машинного обучения.

… способ увеличить эффективность компьютеров

Для решения компьютером задач с применением искусственного интеллекта нужны практика и автоматическая поднастройка. Модель машинного обучения нуждается в тренировке с использованием базы данных и в большинстве ситуаций — в подсказке человека.

…технология, основанная на опыте

ИИ нуждается в предоставлении опыта — иными словами, ему необходимы данные. Чем больше в систему ИИ поступает данных, тем точнее компьютер взаимодействует с ними, а также с теми данными, что получает в дальнейшем. Чем выше точность взаимодействия, тем успешнее будет выполнение поставленной задачи, и выше степень прогностической точности.

Простой пример:

  1. Выбираются входные данные и задаются условия ввода (например, банковские операции с использованием карт).
  2. Строится алгоритм машинного обучения и настраивается на конкретную задачу (например, выявлять мошеннические транзакции).
  3. Используемые в ходе обучения данные дополняются желаемой выходной информацией (например, эти транзакции — мошеннические, а эти нет).

Как работает машинное обучение

Машинное обучение часто называют волшебным или черным ящиком:

Вводишь данные → «волшебный черный ящик» → Миссия выполнена.

Давайте посмотрим на сам процесс обучения, чтобы лучше понять, как машинное обучение справляется с данными.

Машинное обучение основывается на данных. Первый шаг — убедиться, что имеющиеся данные верны и относятся именно к той задаче, которую вы пытаетесь решить. Оцените свои возможности для сбора данных, обдумайте их источник, необходимый формат и т. д.

Очистка

Данные зачастую формируются из различных источников, отображаются в различных форматах и языках. Соответственно, среди них могут оказаться нерелевантные или ненужные значения, которые потребуется удалить. И наоборот, каких-то данных может не хватать, и потребуется их добавить. От правильной подготовки базы данных прямым образом зависит и пригодность к использованию, и достоверность результатов.

Разделение

В зависимости от размера набора данных в некоторых случаях может потребоваться только небольшая их часть. Обычно это называется выборкой. Из выбранной части данные надо разделить на две группы: одна для использования алгоритмом, а другая для оценки его действий.

Обучение

Этот этап фактически направлен на поиск математической функции, которая точно выполнит указанную задачу. Обучение разнится в зависимости от типа используемой модели. Построение линий в простой линейной модели — это обучение; генерация дерева принятия решений для алгоритма случайного леса — это также обучение. Изменение ответов при построении дерева решений поможет скорректировать алгоритм.

Чтобы было проще, сосредоточимся на нейронных сетях.

Суть в том, что алгоритм использует часть данных, обрабатывает их, замеряет эффективность обработки и автоматически регулирует свои параметры (также называемый метод обратного распространения ошибки) до тех пор, пока не сможет последовательно производить желаемый результат с достаточной достоверностью.

Оценка

После того как алгоритм хорошо показал себя на учебных данных, его эффективность оценивается на данных, с которыми он еще не сталкивался. Дополнительная корректировка производится при необходимости. Этот процесс позволяет предотвратить переобучение — явление, при котором алгоритм хорошо работает только на учебных данных.

Оптимизация

Модель оптимизируется, чтобы при интеграции в приложение весить как можно меньше и как можно быстрее работать.

Какие существуют типы машинного обучения и чем они отличаются

Существует множество моделей для машинного обучения, но они, как правило, относятся к одному из трех типов:

  • обучение с учителем (supervised learning);
  • обучение без учителя, или самообучение (unsupervised learning);
  • обучение с подкреплением (reinforcement learning).

В зависимости от выполняемой задачи, одни модели могут быть более подходящими и более эффективными, чем другие.

Обучение с учителем (supervised learning)

В этом типе корректный результат при обучении модели явно обозначается для каждого идентифицируемого элемента в наборе данных. Это означает, что при считывании данных у алгоритма уже есть правильный ответ. Поэтому вместо поисков ответа он стремится найти связи, чтобы в дальнейшем, при введении необозначенных данных, получались правильные классификация или прогноз.

В контексте классификации алгоритм обучения может, например, снабжаться историей транзакций по кредитным картам, каждая из которых помечена как безопасная или подозрительная. Он должен изучить отношения между этими двумя классификациями, чтобы затем суметь соответствующим образом маркировать новые операции в зависимости от параметров классификации (например, место покупки, время между операциями и т. д.).

В случае когда данные непрерывно связаны друг с другом, как, например, изменение курса акций во времени, регрессионный алгоритм обучения может использоваться для прогнозирования следующего значения в наборе данных.

Обучение без учителя (unsupervised learning)

В этом случае у алгоритма в процессе обучения нет заранее установленных ответов. Его цель — найти смысловые связи между отдельными данными, выявить шаблоны и закономерности. Например, кластеризация — это использование неконтролируемого обучения в рекомендательных системах (например, люди, которым понравилась эта бутылка вина, также положительно оценили вот эту).

Обучение с подкреплением

Этот тип обучения представляет собой смесь первых двух. Обычно он используется для решения более сложных задач и требует взаимодействия с окружающей средой. Данные предоставляются средой и позволяют алгоритму реагировать и учиться.

Область применения такого метода обширна: от контроля роботизированных рук и поиска наиболее эффективной комбинации движений, до разработки систем навигации роботов, где поведенческий алгоритм «избежать столкновения» обучается опытным путем, получая обратную связь при столкновении с препятствием.

Логические игры также хорошо подходят для обучения с подкреплением, так как они традиционно содержат логическую цепочку решений: например, покер, нарды и го, в которую недавно выиграл AlphaGo от Google. Этот метод обучения также часто применяется в логистике, составлении графиков и тактическом планировании задач.

Для чего можно использовать машинное обучение

В бизнесе можно рассматривать три сферы применения машинного обучения: описательную, прогнозирующую и нормативную.

Описательное применение относится к записи и анализу статистических данных для расширения возможностей бизнес-аналитики. Руководители получают описание и максимально информативный анализ результатов и последствий прошлых действий и решений. Этот процесс в настоящее время обычен для большинства крупных компаний по всему миру — например, анализ продаж и рекламных проектов для определения их результатов и рентабельности.

Второе применение машинного обучения — прогнозирование. Сбор данных и их использование для прогнозирования конкретного результата позволяет повысить скорость реакции и быстрее принимать верные решения. Например, прогнозирование оттока клиентов может помочь его предотвратить. Сегодня этот процесс применяется в большинстве крупных компаний.

Третье и наиболее продвинутое применение машинного обучения внедряется уже существующими компаниями и совершенствуется усилиями недавно созданных. Простого прогнозирования результатов или поведения уже недостаточно для эффективного ведения бизнеса. Понимание причин, мотивов и окружающей ситуации — вот необходимое условие для принятия оптимального решения. Этот метод наиболее эффективен, если человек и машина объединяют усилия. Машинное обучение используется для поиска значимых зависимостей и прогнозирования результатов, а специалисты по данным интерпретируют результат, чтобы понять, почему такая связь существует. В результате становится возможным принимать более точные и верные решения.

Читать еще:  Html5 обучение с нуля бесплатно

Кроме того, я бы добавил еще одно применение машинного обучения, отличное от прогнозного: автоматизация процессов. Прочесть об этом можно здесь.

Вот несколько примеров задач, которые решает машинное обучение.

Логистика и производство

  • В Rethink Robotics используют машинное обучение для обучения манипуляторов и увеличения скорости производства;
  • В JaybridgeRobotics автоматизируют промышленные транспортные средства промышленного класса для более эффективной работы;
  • В Nanotronics автоматизируют оптические микроскопы для улучшения результатов осмотра;
  • Netflix и Amazon оптимизируют распределение ресурсов в соответствии с потребностями пользователей;
  • Другие примеры: прогнозирование потребностей ERP/ERM; прогнозирование сбоев и улучшение техобслуживания, улучшение контроля качества и увеличение мощности производственной линии.

Продажи и маркетинг

  • 6sense прогнозирует, какой лид и в какое время наиболее склонен к покупке;
  • Salesforce Einstein помогает предвидеть возможности для продаж и автоматизировать задачи;
  • Fusemachines автоматизирует планы продаж с помощью AI;
  • AirPR предлагает пути повышения эффективности PR;
  • Retention Science предлагает кросс-канальное вовлечение;
  • Другие примеры: прогнозирование стоимости жизненного цикла клиента, повышение точности сегментации клиентов, выявление клиентских моделей покупок, и оптимизация опыта пользователя в приложениях.

Кадры

  • Entelo помогает рекрутерам находить и отбирать кандидатов;
  • HiQ помогает менеджерам в управлении талантами.

Финансы

  • Cerebellum Capital and Sentient используют машинное обучение для улучшения процесса принятия инвестиционных решений;
  • Dataminr может помочь с текущими финансовыми решениями, заранее оповещая о социальных тенденциях и последних новостях;
  • Другие примеры: выявление случаев мошенничества и прогнозирование цен на акции.

Здравоохранение

  • Atomwise использует прогнозные модели для уменьшения времени производства лекарств;
  • Deep6 Analytics определяет подходящих пациентов для клинических испытаний;
  • Другие примеры: более точная диагностика заболеваний, улучшение персонализированного ухода и оценка рисков для здоровья.

Больше примеров использования машинного обучения, искусственного интеллекта и других связанных с ними ресурсов вы найдете в списке, созданном Sam DeBrule.

Вместо заключения

Помните, что совместное использование разных систем и методик — ключ к успеху. ИИ и машинное обучение хоть и сложны, но увлекательны. Буду рад продолжить обсуждение стратегий разработки и проектирования с использованием больших данных вместе с вами. Комментируйте и задавайте вопросы.

Мнение автора и редакции может не совпадать. Хотите написать колонку для «Нетологии»? Читайте наши условия публикации.

Кластеризация

Кластеризация (англ. cluster analysis) — задача группировки множества объектов на подмножества (кластеры) таким образом, чтобы объекты из одного кластера были более похожи друг на друга, чем на объекты из других кластеров по какому-либо критерию.

Задача кластеризации относится к классу задач обучения без учителя.

Пусть [math]X[/math] — множество объектов, [math]Y[/math] — множество идентификаторов (меток) кластеров. На множестве [math]X[/math] задана функция расстояния между объектами [math]rho(x,x’)[/math] . Дана конечная обучающая выборка объектов [math]X^m = < x_1, dots, x_m >subset X[/math] . Необходимо разбить выборку на подмножества (кластеры), то есть каждому объекту [math]x_i in X^m[/math] сопоставить метку [math]y_i in Y[/math] , таким образом чтобы объекты внутри каждого кластера были близки относительно метрики [math]rho[/math] , а объекты из разных кластеров значительно различались.

Множество [math]Y[/math] в некоторых случаях известно заранее, однако чаще ставится задача определить оптимальное число кластеров, с точки зрения того или иного критерия качества кластеризации.

Кластеризация (обучение без учителя) отличается от классификации (обучения с учителем) тем, что метки объектов из обучающей выборки [math]y_i[/math] изначально не заданы, и даже может быть неизвестно само множество [math]Y[/math] .

Решение задачи кластеризации объективно неоднозначно по ряду причин:

  • Не существует однозначного критерия качества кластеризации. Известен ряд алгоритмов, осуществляющих разумную кластеризацию «по построению», однако все они могут давать разные результаты. Следовательно, для определения качества кластеризации и оценки выделенных кластеров необходим эксперт предметной области;
  • Число кластеров, как правило, заранее не известно и выбирается по субъективным критериям. Даже если алгоритм не требует изначального знания о числе классов, конкретные реализации зачастую требуют указать этот параметр [1] ;
  • Результат кластеризации существенно зависит от метрики. Однако существует ряд рекомендаций по выбору метрик для определенных классов задач. [2] .

Число кластеров фактически является гиперпараметром для алгоритмов кластеризации. Подробнее про другие гиперпараметры и их настройку можно прочитать в статье [3] .

Для формализации алгоритмов кластеризации была использована аксиоматическая теория. Клейнберг постулировал три простых свойства в качестве аксиом кластеризации и доказал теорему, связывающую эти свойства.

Первая аксиома интуитивно понятна. Она требует, чтобы функция кластеризации не зависела от системы счисления функции расстояния и была нечувствительна к линейному растяжению и сжатию метрического пространства обучающей выборки.

Вторая аксиома утверждает, что алгоритм кластеризации должен уметь кластеризовать обучающую выборку на любое фиксированное разбиение для какой-то функции расстояния [math]rho[/math] .

Третья аксиома требует сохранения кластеров при уменьшении внутрикластерного расстояния и увеличении межкластерного расстояния.

Исходя из этих аксиом Клейнберг сформулировал и доказал теорему:

Несмотря на эту теорему Клейнберг показал [4] , что иерархическая кластеризация по методу одиночной связи с различными критериями останова удовлетворяет любым двум из трех аксиом.

Типы входных данных [ править ]

  • Признаковое описание объектов. Каждый объект описывается набором своих характеристик, называемых признаками (англ. features). Признаки могут быть как числовыми, так и категориальными;
  • Матрица расстояний между объектами. Каждый объект описывается расстоянием до всех объектов из обучающей выборки.

Вычисление матрицы расстояний по признаковому описанию объектов может быть выполнено бесконечным числом способов в зависимости от определения метрики между объектами. Выбор метрики зависит от обучающей выборки и поставленной задачи.

Цели кластеризации [ править ]

  • Классификация объектов. Попытка понять зависимости между объектами путем выявления их кластерной структуры. Разбиение выборки на группы схожих объектов упрощает дальнейшую обработку данных и принятие решений, позволяет применить к каждому кластеру свой метод анализа (стратегия «разделяй и властвуй»). В данном случае стремятся уменьшить число кластеров для выявления наиболее общих закономерностей;
  • Сжатие данных. Можно сократить размер исходной выборки, взяв один или несколько наиболее типичных представителей каждого кластера. Здесь важно наиболее точно очертить границы каждого кластера, их количество не является важным критерием;
  • Обнаружение новизны (обнаружение шума). Выделение объектов, которые не подходят по критериям ни в один кластер. Обнаруженные объекты в дальнейшем обрабатывают отдельно.

Методы кластеризации [ править ]

  • Графовые алгоритмы кластеризации. Наиболее примитивный класс алгоритмов. В настоящее время практически не применяется на практике;
  • Вероятностные алгоритмы кластеризации. Каждый объект из обучающей выборки относится к каждому из кластеров с определенной степенью вероятности:
    • EM-алгоритм;
  • Иерархические алгоритмы кластеризации. Упорядочивание данных путем создания иерархии вложенных кластеров;
  • Алгоритм [math]mathrm[/math] -средних [на 28.01.19 не создан] (англ. [math]mathrm[/math] -means). Итеративный алгоритм, основанный на минимизации суммарного квадратичного отклонения точек кластеров от центров этих кластеров;
  • Распространение похожести (англ. affinity propagation). Распространяет сообщения о похожести между парами объектов для выбора типичных представителей каждого кластера;
  • Сдвиг среднего значения (англ. mean shift). Выбирает центроиды кластеров в областях с наибольшей плотностью;
  • Спектральная кластеризация (англ. spectral clustering). Использует собственные значения матрицы расстояний для понижения размерности перед использованием других методов кластеризации;
  • Основанная на плотности пространственная кластеризация для приложений с шумами (англ. Density-based spatial clustering of applications with noise, DBSCAN). Алгоритм группирует в один кластер точки в области с высокой плотностью. Одиноко расположенные точки помечает как шум.

Для оценки качества кластеризации задачу можно переформулировать в терминах задачи дискретной оптимизации. Необходима так сопоставить объектам из множества [math]X[/math] метки кластеров, чтобы значение выбранного функционала качества приняло наилучшее значение. В качестве примера, стремятся достичь минимума среднего внутрикластерного расстояния [math]F_0 = dfrac<[y_i=y_j]cdotrho(x_i, x_j)>>[y_i=y_j]>[/math] или максимума среднего межкластерного расстояния [math]F_1 = dfrac<[y_ineq y_j]cdotrho(x_i, x_j)>>[y_ineq y_j]>[/math] .

Подробнее про меры качества можно прочитать в статье оценка качества в задаче кластеризации.

Биология и биоинформатика [ править ]

  • В области экологии кластеризация используется для выделения пространственных и временных сообществ организмов в однородных условиях;
  • Кластерный анализ используется для группировки схожих геномных последовательностей в семейство генов, которые являются консервативными структурами для многих организмов и могут выполнять схожие функции;
  • Кластеризация помогает автоматически определять генотипы по различным частям хромосом;
  • Алгоритмы применяются для выделения небольшого числа групп генетических вариации человеческого генома.

Медицина [ править ]

  • Используется в позитронно-эмиссионной томографии для автоматического выделения различных типов тканей на трехмерном изображении;
  • Применяется для выявления шаблонов устойчивости к антибиотикам; для классификации антибиотиков по типу антибактериальной активности.

Маркетинг [ править ]

Кластеризация широко используется при изучении рынка для обработки данных, полученных из различных опросов. Может применяться для выделения типичных групп покупателей, разделения рынка для создания персонализированных предложений, разработки новых линий продукции.

Ссылка на основную публикацию
Adblock
detector