Openbravo-rus.ru

Образование по русски
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Машинное обучение классификация

Классификация

Материал из MachineLearning.

Классификация — один из разделов машинного обучения, посвященный решению следующей задачи. Имеется множество объектов (ситуаций), разделённых некоторым образом на классы. Задано конечное множество объектов, для которых известно, к каким классам они относятся. Это множество называется обучающей выборкой. Классовая принадлежность остальных объектов не известна. Требуется построить алгоритм, способный классифицировать произвольный объект из исходного множества.

Классифицировать объект — значит, указать номер (или наименование класса), к которому относится данный объект.

Классификация объекта — номер или наименование класса, выдаваемый алгоритмом классификации в результате его применения к данному конкретному объекту.

В математической статистике задачи классификации называются также задачами дискриминантного анализа.

В машинном обучении задача классификации относится к разделу обучения с учителем. Существует также обучение без учителя, когда разделение объектов обучающей выборки на классы не задаётся, и требуется классифицировать объекты только на основе их сходства друг с другом. В этом случае принято говорить о задачах кластеризации или таксономии, и классы называть, соответственно, кластерами или таксонами.

Содержание

Типология задач классификации

Типы входных данных

  • Признаковое описание — наиболее распространённый случай. Каждый объект описывается набором своих характеристик, называемых признаками. Признаки могут быть числовыми или нечисловыми.
  • Матрица расстояний между объектами. Каждый объект описывается расстояниями до всех остальных объектов обучающей выборки. С этим типом входных данных работают немногие методы, в частности, метод ближайших соседей, метод парзеновского окна, метод потенциальных функций.
  • Временной ряд или сигнал представляет собой последовательность измерений во времени. Каждое измерение может представляться числом, вектором, а в общем случае — признаковым описанием исследуемого объекта в данный момент времени.
  • Изображение или видеоряд.
  • Встречаются и более сложные случаи, когда входные данные представляются в виде графов, текстов, результатов запросов к базе данных, и т. д. Как правило, они приводятся к первому или второму случаю путём предварительной обработки данных и извлечения признаков.

Классификацию сигналов и изображений называют также распознаванием образов.

Типы классов

  • Двухклассовая классификация. Наиболее простой в техническом отношении случай, который служит основой для решения более сложных задач.
  • Многоклассовая классификация. Когда число классов достигает многих тысяч (например, при распознавании иероглифов или слитной речи), задача классификации становится существенно более трудной.
  • Непересекающиеся классы.
  • Пересекающиеся классы. Объект может относиться одновременно к нескольким классам.
  • Нечёткие классы. Требуется определять степень принадлежности объекта каждому из классов, обычно это действительное число от 0 до 1.

Классификация: формальная постановка

Пусть — множество описаний объектов, — конечное множество номеров (имён, меток) классов. Существует неизвестная целевая зависимость — отображение , значения которой известны только на объектах конечной обучающей выборки . Требуется построить алгоритм , способный классифицировать произвольный объект .

Вероятностная постановка задачи

Более общей считается вероятностная постановка задачи. Предполагается, что множество пар «объект, класс» является вероятностным пространством с неизвестной вероятностной мерой . Имеется конечная обучающая выборка наблюдений , сгенерированная согласно вероятностной мере . Требуется построить алгоритм , способный классифицировать произвольный объект .

Признаковое пространство

Признаком называется отображение , где — множество допустимых значений признака. Если заданы признаки , то вектор называется признаковым описанием объекта . Признаковые описания допустимо отождествлять с самими объектами. При этом множество называют признаковым пространством.

В зависимости от множества признаки делятся на следующие типы:

  • бинарный признак: ;
  • номинальный признак: — конечное множество;
  • порядковый признак: — конечное упорядоченное множество;
  • количественный признак: — множество действительных чисел.

Часто встречаются прикладные задачи с разнотипными признаками, для их решения подходят далеко не все методы.

Примеры прикладных задач

Задачи медицинской диагностики

В роли объектов выступают пациенты. Признаки характеризуют результаты обследований, симптомы заболевания и применявшиеся методы лечения. Примеры бинарных признаков: пол, наличие головной боли, слабости. Порядковый признак — тяжесть состояния (удовлетворительное, средней тяжести, тяжёлое, крайне тяжёлое). Количественные признаки — возраст, пульс, артериальное давление, содержание гемоглобина в крови, доза препарата. Признаковое описание пациента является, по сути дела, формализованной историей болезни. Накопив достаточное количество прецедентов в электронном виде, можно решать различные задачи:

  • классифицировать вид заболевания (дифференциальная диагностика);
  • определять наиболее целесообразный способ лечения;
  • предсказывать длительность и исход заболевания;
  • оценивать риск осложнений;
  • находить синдромы — наиболее характерные для данного заболевания совокупности симптомов.

Ценность такого рода систем в том, что они способны мгновенно анализировать и обобщать огромное количество прецедентов — возможность, недоступная специалисту-врачу.

Предсказание месторождений полезных ископаемых

Признаками являются данные геологической разведки. Наличие или отсутствие тех или иных пород на территории района кодируется бинарными признаками. Физико-химические свойства этих пород могут описываться как количественными, так и качественными признаками. Обучающая выборка составляется из прецедентов двух классов: районов известных месторождений и похожих районов, в которых интересующее ископаемое обнаружено не было. При поиске редких полезных ископаемых количество объектов может оказаться намного меньше, чем количество признаков. В этой ситуации плохо работают классические статистические методы. Задача решается путём поиска закономерностей в имеющемся массиве данных. В процессе решения выделяются короткие наборы признаков, обладающие наибольшей информативностью — способностью наилучшим образом разделять классы. По аналогии с медицинской задачей, можно сказать, что отыскиваются «синдромы» месторождений. Это важный побочный результат исследования, представляющий значительный интерес для геофизиков и геологов.

Оценивание кредитоспособности заёмщиков

Эта задача решается банками при выдаче кредитов. Потребность в автоматизации процедуры выдачи кредитов впервые возникла в период бума кредитных карт 60-70-х годов в США и других развитых странах. Объектами в данном случае являются физические или юридические лица, претендующие на получение кредита. В случае физических лиц признаковое описание состоит из анкеты, которую заполняет сам заёмщик, и, возможно, дополнительной информации, которую банк собирает о нём из собственных источников. Примеры бинарных признаков: пол, наличие телефона. Номинальные признаки — место проживания, профессия, работодатель. Порядковые признаки — образование, занимаемая должность. Количественные признаки — сумма кредита, возраст, стаж работы, доход семьи, размер задолженностей в других банках. Обучающая выборка составляется из заёмщиков с известной кредитной историей. В простейшем случае принятие решений сводится к классификации заёмщиков на два класса: «хороших» и «плохих». Кредиты выдаются только заёмщикам первого класса. В более сложном случае оценивается суммарное число баллов (score) заёмщика, набранных по совокупности информативных признаков. Чем выше оценка, тем более надёжным считается заёмщик. Отсюда и название — кредитный скоринг. На стадии обучения производится синтез и отбор информативных признаков и определяется, сколько баллов назначать за каждый признак, чтобы риск принимаемых решений был минимален. Следующая задача — решить, на каких условиях выдавать кредит: определить процентную ставку, срок погашения, и прочие параметры кредитного договора. Эта задача также может быть решения методами обучения по прецедентам.

Общие понятия

Одним из первых, кто использовал термин «машинное обучение», был изобретатель первой самообучающейся компьютерной программы игры в шашки А. Л. Самуэль в 1959 г. [1]

Это определение не выдерживает критики, так как не понятно, что означает наречие «явно». Более точное определение дал намного позже Т. М. Митчелл. [2]

$X$ — множество объектов (англ. object set, or input set)
$Y$ — множество меток классов (англ. label set, or output set)
$hat y∶ X → Y$ — неизвестная зависимость (англ. unknown target function (dependency))

Дано
$ ⊂ X$ — обучающая выборка (англ. training sample set)
$y_i = hat y(x_i), i = 1, . . . , l $ — известные метки классов
Найти
Найти $ a ∶ X → Y $ — алгоритм, решающую функцию (англ. decision function), приближающую $y$ на всём множестве $X$.

Признаки [ править ]

Компьютер всегда имеет дело с признаковым описанием объектов. Например, пациента можно описать признаками: имя, возраст, номер полиса, жалобы, давление, температура, результаты анализов.
$f_j∶ X → D_j,j = 1, . , n$ — признаки (англ. features, or attributes).

  • бинарный (binary): $D_j = <0, 1>$;
  • номинальный, или категориальный (categorical): $D_j$ конечно;
  • упорядоченный (ordinal): $D_j$ конечно и упорядоченно;
  • числовой (numerical): $D_j = mathbb$.

т.е. объект представляется как набор признаков $(f_1(x). ,f_n(x))$. Данные обычно представляются в виде матрицы объектов-признаков

[math] F = ||f_j(x_i)||_ <[l times n]>= begin f_1(x_1) & cdots & f_n(x_1) \ cdots & cdots & cdots \ f_1(x_l) & cdots & f_n(x_l) \ end [/math]

Типы задач [ править ]

Классификация (англ. classification)

  • $Y = <−1, +1>$ — классификация на 2 класса;
  • $Y = <1, . . . , M>$ — на $M$ непересекающихся классов;
  • $Y = <0, 1>^M$— на $M$ классов, которые могут пересекаться.

Цель: научиться определять, к какому классу принадлежит объект.
Примеры: распознавание текста по рукописному вводу; определение того, находится на фотографии человек или кот; определение, является ли письмо спамом.
Методы: метод ближайших соседей, дерево решений, логистическая регрессия, метод опорных векторов, байесовский классификатор, cверточные нейронные сети.

Восстановление регрессии (англ. regression)

Цель: получать прогноз на основе выборки объектов.
Примеры: предсказание стоимости акции через полгода; предсказание прибыли магазина в следующем месяце; предсказание качества вина на слепом тестировании.
Методы: линейная регрессия, дерево решений, метод опорных векторов.

  • $Y$ — конечное упорядоченное множество.

Цель: научиться по множеству объектов получать множество рейтингов, упорядоченное согласно заданному отношению порядка.
Примеры: выдача поискового запроса; подбор интересных новостей для пользователя.
Методы: поточечный подход, попарный подход, списочный подход.

Кластеризация (англ. clustering)

Цель: разбить множество объектов на подмножества (кластеры) таким образом, чтобы объекты из одного кластера были более похожи друг на друга, чем на объекты из других кластеров по какому-либо критерию.
Примеры: разбиение клиентов сотового оператора по платёжеспособности; разбиение космических объектов на похожие (галактики, планеты, звезды).
Методы: иерархическая кластеризация, эволюционные алгоритмы кластеризации, EM-алгоритм.

Вспомогательные типы задач [ править ]

Уменьшение размерности (англ. dimensionality reduction)

Цель: научиться описывать данные не $N$ признаками, а меньшим числом для повышения точности модели или последующей визуализации.
Примеры: визуализация в двумерном или трехмерном пространстве; сжатие данных.
Методы: гребневая регрессия, лассо-регрессия, метод главных компонент, стохастическое вложение соседей с t-распределением.

Выявление аномалий (англ. anomaly detection)

Цель: научиться выявлять аномалии в данных. Отличительная особенность задачи от классификации — примеров аномалий для тренировки модели очень мало, либо нет совсем; поэтому для ее решения необходимы специальные методы.
Примеры: определение мошеннических транзакций по банковской карте; обнаружение событий, предвещающих землетрясение.
Методы: экстремальный анализ данных, аппроксимирующий метод, проецирующие методы.

Обучение с учителем (англ. Supervised learning [3] ) [ править ]

Метки классов $y_i$ доступны все сразу (известны ответы для поставленной задачи).
Задачи, которые могут решаться этим способом: классификация, регрессия.

Обучение без учителя (англ. Unsupervised learning) [ править ]

Изучает широкий класс задач обработки данных, в которых известны только описания множества объектов (обучающей выборки), и требуется обнаружить внутренние взаимосвязи, зависимости, закономерности, существующие между объектами. Т.е. тренировочные данные доступны все сразу, но ответы для поставленной задачи неизвестны.

Задачи, которые могут решаться этим способом: кластеризация, нахождение ассоциативных правил, выдача рекомендаций (например, реклама), уменьшение размерности датасета, обработка естественного языка.

Обучение с частичным привлечением учителя (англ. Semi-supervised learning [4] ) [ править ]

Занимает промежуточное положение между обучением с учителем и без учителя. Каждый прецедент представляет собой пару «объект, ответ», но ответы известны только на части прецедентов (Размечено мало, либо малоинформативная часть).
Примером частичного обучения может послужить сообучение: два или более обучаемых алгоритма используют один и тот же набор данных, но каждый при обучении использует различные — в идеале некоррелирующие — наборы признаков объектов.

Обучение с подкреплением (англ. Reinforcement learning) [ править ]

Частный случай обучения с учителем, сигналы подкрепления (правильности ответа) выдаются не учителем, а некоторой средой, с которой взаимодействует программа. Размеченность данных зависит от среды.

Окружение обычно формулируется как марковский процесс принятия решений (МППР) с конечным множеством состояний, и в этом смысле алгоритмы обучения с подкреплением тесно связаны с динамическим программированием. Вероятности выигрышей и перехода состояний в МППР обычно являются величинами случайными, но стационарными в рамках задачи.

При обучении с подкреплением, в отличие от обучения с учителем, не предоставляются верные пары «входные данные-ответ», а принятие субоптимальных решений (дающих локальный экстремум) не ограничивается явно. Обучение с подкреплением пытается найти компромисс между исследованием неизученных областей и применением имеющихся знаний (англ. exploration vs exploitation tradeoff).

Активное обучение (англ. Active learning) [ править ]

Отличается тем, что обучаемый имеет возможность самостоятельно назначать следующий прецедент, который станет известен. Применяется когда получение истиной метки для объекта затруднительно. Поэтому алгоритм должен уметь определять, на каких объектах ему надо знать ответ, чтобы лучше всего обучиться, построить наилучшую модель.

Обучение в реальном времени (англ. Online learning) [ править ]

Может быть как обучением с учителем, так и без учителя. Специфика в том, что тренировочные данные поступают последовательно. Требуется немедленно принимать решение по каждому прецеденту и одновременно доучивать модель зависимости с учётом новых прецедентов. Здесь существенную роль играет фактор времени.

  • Предсказание месторождений полезных ископаемых

Признаками являются данные геологической разведки.

  • Бинарные признаки: наличие/отсутствие тех или иных пород на территории района;
  • Числовые признаки: физико-химические свойства пород можно описать количественной характеристикой.

Обучающая выборка состоит из двух классов:

  • районы известных месторождений;
  • похожие районы, в которых интересующее ископаемое обнаружено не было.

При поиске редких полезных ископаемых количество объектов может оказаться намного меньше, чем количество признаков. В этой ситуации плохо работают классические статистические методы. Задача решается путём поиска закономерностей в имеющемся массиве данных. В процессе решения выделяются короткие наборы признаков, обладающие наибольшей информативностью — способностью наилучшим образом разделять классы («синдромы» месторождений).

  • Оценивание кредитоспособности заёмщиков

Эта задача решается банками при выдаче кредитов. Объектами в данном случае являются физические или юридические лица, претендующие на получение кредита.

В случае физических лиц признаковое описание состоит из:

  • анкеты, которую заполняет сам заёмщик;
  • дополнительной информации, которую банк собирает о нём из собственных источников.

Можно выделить следующие признаки:

  • Бинарные признаки: пол, наличие телефона;
  • Номинальные признаки: место проживания, профессия, работодатель;
  • Порядковые признаки: образование, занимаемая должность;
  • Числовые признаки:сумма кредита, возраст, стаж работы, доход семьи, размер задолженностей в других банках.

Обучающая выборка составляется из заёмщиков с известной кредитной историей.

На стадии обучения производится синтез и отбор информативных признаков и определяется, сколько баллов назначать за каждый признак, чтобы риск принимаемых решений был минимален. Чем выше суммарное число баллов заёмщика, набранных по совокупности информативных признаков, тем более надёжным считается заёмщик.

В роли объектов выступают пациенты. Признаки характеризуют результаты обследований, симптомы заболевания и применявшиеся методы лечения.

  • Бинарные признаки: пол, наличие головной боли, слабости;
  • Порядковый признак: тяжесть состояния (удовлетворительное, средней тяжести, тяжёлое, крайне тяжёлое);
  • Числовые признаки:возраст, пульс, артериальное давление, содержание гемоглобина в крови, доза препарата.

Признаковое описание пациента является, по сути дела, формализованной историей болезни.

Накопив достаточное количество данных, можно решать различные задачи:

  • классифицировать вид заболевания (дифференциальная диагностика);
  • определять наиболее целесообразный способ лечения;
  • предсказывать длительность и исход заболевания;
  • оценивать риск осложнений;
  • находить наиболее характерные для данного заболевания совокупности симптомов.

Ценность такого рода систем в том, что они способны мгновенно анализировать и обобщать огромное количество прецедентов — возможность, недоступная специалисту-врачу.

  • Задача классификации видов ириса (Фишер 1936)[5][6]

Как выбрать модель машинного обучения

Для начала рассмотрим некоторые руководящие принципы, которые используются при создании моделей:

  • Сбор данных (обычно в больших количествах).
  • Установление цели, гипотезы для проверки и сроков для достижения.
  • Проверка на наличие аномалий или выбросов.
  • Поиск недостающих данных.
  • Очистка данных на основе ограничений, целей и тестирования гипотез.
  • Выполнение статистического анализа и начальной визуализации.
  • Масштабирование, регуляризация, нормализация, разработка функций, случайная выборка и проверка данных для подготовки модели.
  • Обучение и тестирование данных.
  • Создание моделей на основе показателей классификации/регрессии для обучения с учителем или без него.
  • Установление базовой точности и проверка точности текущей модели на данных для обучения и тестирования.
  • Повторная проверка решения проблемы и полученных результатов.
  • Подготовка модели для развертывания и поставки продукта (AWS, Docker, Buckets, App, веб-сайт, ПО, Flask и т. д.).

Задачи машинного обучения подразделяются на обучение с учителем, без учителя, с частичным привлечением учителя и с подкреплением.

В процессе обучения с частичным привлечением учителя используются немаркированные данные для улучшения понимания структуры в целом. Другими словами, мы изучаем особенности только на основе небольшого набора для обучения, потому что он маркирован! Мы не используем преимущества тестового набора, содержащего множество ценной информации, из-за отсутствия маркировки. В результате нам необходимо найти способ обучения на основе большого количества немаркированных данных.

Обучение с подкреплением — это принятие подходящих мер для максимизации выгоды в определенной ситуации. Машина или робот обучаются, пробуя все возможные пути, а затем выбирают тот, который дает наибольшую выгоду с наименьшими трудностями.

Подходы

Ниже приведены подходы к выбору модели для решения задач машинного обучения/глубокого обучения:

  1. Несбалансированные данные достаточно распространены.

Обработку несбалансированных данных можно осуществить с помощью ресамплинга — использования выборки данных для повышения точности и подсчета погрешностей параметра совокупности. Методы ресамплинга используют технику вложенного ресамплинга.

Мы разделяем исходные данные на наборы для обучения и тестирования. После нахождения подходящих коэффициентов для модели с помощью первого набора мы применяем эту модель ко второму набору, чтобы обнаружить точность модели. Эта финальная точность, полученная перед применением ее к неизвестным данным, также называется набором для проверки и обеспечивает возможность получения более точных результатов.

Однако при дополнительном разделении набора для обучения на поднаборы и расчете их финальной точности, а затем многократного повторения этого процесса для множества поднаборов, можно добиться максимальной точности! Ресамплинг выполняется для повышения точности модели и разделяется на несколько способов, таких как начальная загрузка, перекрестная проверка, многократная перекрестная проверка и т. д.

2. Мы можем создавать новые функции с помощью метода главных компонент.

Этот метод также известен как PCA и помогает уменьшить размерность. Методы кластеризации очень распространены при обучении без учителя.

3. Мы можем предотвратить переобучение, недостаточное обучение, выбросы и шум с помощью методов регуляризации.

4. Нам необходимо устранить проблему «черного ящика».

Для решения этой проблемы стоит рассмотреть стратегии для построения интерпретируемых моделей. Системы ИИ «черного ящика» для автоматического принятия решений в большинстве случаев основаны на машинном обучении на больших данных, отображающих функции пользователя в класс, который предсказывает поведенческие черты личности без объяснения причин.

Проблема заключается не только в отсутствии прозрачности, но и в возможном возникновении погрешностей, унаследованных алгоритмами от человеческих предрассудков, и сборе артефактов, скрытых в данных обучения, которые могут привести к неправильным решениям и неправильному анализу.

5. Понимание алгоритмов, не восприимчивых к выбросам.

Чтобы преодолеть отклонение от нормы, можно использовать произвольность в моделях или случайные леса.

Модели машинного обучения

  1. Первый подход к предсказанию постоянных значений: линейная регрессия — наиболее распространенный выбор, например, при предсказании стоимости жилья.
  2. Подходы бинарной классификации обычно схожи с моделями логистической регрессии. При возникновении проблемы классификации с двумя классами методы опорных векторов (SVM) — отличный способ получения наилучшего результата!
  3. Мультиклассовая классификация: случайные леса — предпочтительный выбор, однако SVM обладают схожими преимуществами. Случайные леса больше предназначены для мультикласса!

Для мультикласса нужно разбить данные на несколько задач бинарной классификации. Случайные леса отлично подходят для работы с несколькими числовыми и категориальными признаками, даже если они обладают различными масштабами. Это означает, что вы можете работать с исходными данными. SVM максимизируют отступ и основываются на концепции расстояния между различными точками. Остается только решить, действительно ли расстояние имеет значение!

В результате для категориальных признаков необходимо использовать единый код. Кроме того, в качестве предварительной обработки рекомендуется применять min-max или другое масштабирование. Для наиболее распространенных задач классификации случайные леса предоставляют вероятность принадлежности к этому классу, в то время как SVM предоставляют расстояние до границы, которую все же нужно преобразовать при необходимости в вероятность. SVM предоставляют опорные вектора — точки в каждом ближайшем к границе классе.

4. Деревья решений просты в использовании и понимании. Они реализуются с помощью таких моделей, как случайные леса или градиентный бустинг.

5. Для соревнований Kaggle предпочтительны случайный лес и XGBoost!

Модели глубокого обучения

Глубокое обучение — это функция ИИ, которая имитирует работу человеческого мозга при обработке данных и создании шаблонов для использования в принятии решений.

Мы можем использовать многослойные персептроны, чтобы сосредоточиться на сложных в определении признаках, которые содержат большое количество маркированных данных!

Многослойный персептрон (MLP) — это искусственная нейронная сеть с прямой связью, которая генерирует набор выходных данных из набора входных. MLP характеризуется несколькими слоями входных узлов, связанных как ориентированный граф между входным и выходным слоями.

Для машинного обучения на основе зрения, такого как классификация изображений, обнаружение объектов, сегментация или распознавание изображений, используется сверточная нейронная сеть (CNN). CNN используются в распознавании и обработке изображений, которые предназначены для обработки пиксельных данных.

Для задач моделирования последовательности, таких как языковой перевод или классификация текста, предпочтительны рекуррентные нейронные сети (RNN).

RNN созданы для моделей, которые нуждаются в контексте, чтобы предоставить выходные данные на основе входных. В некоторых случаях контекст играет решающую роль для предсказания наиболее подходящего результата. В других нейронных сетях все входные данные независимы друг от друга.

Алгоритмы машинного обучения: основные понятия

Машинное обучение использует широкий спектр алгоритмов для перевода наборов данных в прогнозные модели. Какой алгоритм сработает лучше, зависит от решаемой задачи.

Машинное обучение получило широкое распространение, но и еще более широкое непонимание. Коротко изложим основные понятия машинного обучения, обсудим некоторые из наиболее распространенных алгоритмов машинного обучения и объясним, как эти алгоритмы связаны с другими частями мозаики создания прогнозных моделей из исторических данных.

Что такое алгоритмы машинного обучения?

Машинное обучение – это класс методов автоматического создания прогнозных моделей на основе данных. Алгоритмы машинного обучения превращают набор данных в модель. Какой алгоритм работает лучше всего (контролируемый, неконтролируемый, классификация, регрессия и т. д.), зависит от типа решаемой задачи, доступных вычислительных ресурсов и характера данных.

Алгоритмы обычно напрямую говорят компьютеру, что делать. Например, алгоритмы сортировки преобразуют неупорядоченные данные в данные, упорядоченные по некоторым критериям, часто в числовом или алфавитном порядке одного или нескольких полей данных.

Алгоритмы линейной регрессии «подгоняют» прямую линию к числовым данным, как правило, выполняя инверсии матрицы, чтобы минимизировать значение квадрата погрешности между линией и данными. Квадрат погрешности используется в качестве метрики, поскольку не важно, находится ли линия регрессии выше или ниже точек данных — принципиально только расстояние между построенной линией и исходными точками.

Алгоритмы нелинейной регрессии, которые «подгоняют» кривые (например, многочлены или экспоненты) к данным, немного сложнее: в отличие от задач линейной регрессии для них не существует детерминистских подходов. Вместо этого алгоритмы нелинейной регрессии реализуют тот или иной итерационный процесс минимизации, часто — некоторую вариацию метода самого крутого спуска.

Самый крутой спуск в общем случае предполагает вычисление квадрата погрешности и ее градиента при текущих значениях параметров, выбор размера шага (он же — скорость обучения), следование направлению градиента «вниз по склону», а затем пересчет квадрата погрешности и ее градиента при новых значениях параметров. В конце концов, если повезет, все сойдется. Варьируя алгоритм самого крутого спуска пытаются улучшить его характеристики сходимости.

Алгоритмы машинного обучения еще сложнее, чем нелинейная регрессия, отчасти потому, что машинное обучение обходится без ограничения на «подгонку» к определенной математической функции. Есть две основные категории задач, которые часто решаются с помощью машинного обучения: регрессия и классификация. Регрессия – для числовых данных (например, каков вероятный доход для человека с данным адресом и профессией). Классификация – для нечисловых данных (например, сможет ли заемщик выплатить кредит).

Задачи прогнозирования (например, какова будет цена открытия акций «Яндекса» завтра) являются подмножеством регрессионных задач для данных временных рядов. Задачи классификации иногда подразделяют на бинарные (да или нет) и мультикатегории (животные, фрукты или предметы мебели).

Контролируемое обучение против неконтролируемого

Независимо от этих типов существуют еще два вида алгоритмов машинного обучения: контролируемые (supervised) и неконтролируемые (unsupervised). В контролируемом обучении формируется обучающий набор данных с ответами, скажем, набор изображений животных вместе с именами животных. Целью обучения будет модель, которая сможет правильно распознавать изображения (то есть узнавать животных, включенных в набор обучения), которые она ранее не видела.

При неконтролируемом обучении алгоритм сам просматривает данные и пытается получить значимые результаты. Результатом может быть, например, набор групп значений, которые могут быть связаны внутри каждой группы. Алгоритм работает надежнее, когда такие группы не пересекаются.

Обучение превращает контролируемые алгоритмы в модели, оптимизируя их параметры, чтобы найти набор значений, который наилучшим образом соответствует данным. Алгоритмы часто основываются на вариантах самого крутого спуска, оптимизированных для конкретного случая; пример — стохастический градиентный спуск (SGD), который является по существу самым крутым спуском, выполненным многократно от случайных начальных точек. Учет факторов, которые корректируют направление градиента на основе импульса или регулируют скорость обучения в зависимости на основе прогресса от одного прогона данных (его называют эпохой) к следующему, позволяют подобрать оптимальные настройки SGD.

Очистка данных для машинного обучения

Такой вещи, как чистые данные, не существует. Чтобы быть полезными для машинного обучения, данные должны быть сильно отфильтрованы. Например, можно:

  • Просмотреть данные и исключить все столбцы, в которых много недостающих данных.
  • Просмотреть данные еще раз и выбрать столбцы, которые будут использованы для прогнозирования. (Если эту операцию повторять эту операцию несколько раз, то можно выбирать разные столбцы.)
  • Исключить все строки, в которых отсутствуют данные в оставшихся столбцах.
  • Исправить очевидные опечатки и объединить эквивалентные значения. Скажем, РФ, Российская Федерация и Россия могут быть собраны в одну категорию.
  • Исключить строки с данными, которые находятся вне нужного диапазона. Например, если анализировать поездки на такси в пределах Москвы, вы захотите отфильтровать строки с широтами и долготами, которые находятся за пределами агломерации.

Можно сделать еще много чего, но это будет зависеть от собранных данных. Это может быть утомительно, но, если шаг очистки данных в конвейере машинного обучения предусмотрен, в дальнейшем по желанию его можно будет изменить или повторить.

Кодирование и нормализация данных для машинного обучения

Чтобы использовать категориальные данные для машинной классификации, необходимо преобразовать текстовые метки в другую форму. Существует два типа кодировок.

Первая – нумерация меток, каждое значение текстовой метки заменяется числом. Вторая – «единая горячая» (one-hot) кодировка, каждое значение текстовой метки превращается в столбец с двоичным значением (1 или 0). Большинство платформ машинного обучения имеют функции, которые выполняют кодировку самостоятельно. Как правило, предпочтительной является единая горячая кодировка, поскольку нумерация меток иногда может запутать алгоритм машинного обучения, заставляя думать, что коды упорядочены.

Чтобы использовать числовые данные для машинной регрессии, данные обычно требуется нормализовать. В противном случае при вычислении евклидовых расстояний наборы чисел с большими диапазонами могут начать неоправданно «доминировать», а оптимизация самого крутого спуска может не сходиться. Существует несколько способов нормализации данных для машинного обучения, включая минимаксную нормализацию, центрирование, стандартизацию и масштабирование до единичной длины. Этот процесс также часто называют масштабированием.

Что такое признаки в машинном обучении?

Признак – это индивидуальное измеримое свойство или характеристика наблюдаемого явления. Понятие «признак» связано с понятием независимой переменной, которая используется в статистических методах, таких как линейная регрессия. Векторы признаков объединяют все признаки одной строки в числовой вектор.

Часть искусства выбора функций состоит в том, чтобы выбрать минимальный набор независимых переменных, которые объясняют задачу. Если две переменные сильно коррелированы, их необходимо объединить в одну или удалить. Иногда люди анализируют главные компоненты, чтобы преобразовать коррелированные переменные в набор линейно некоррелированных переменных.

Некоторые преобразования, используемые для построения новых признаков или уменьшения размерности их векторов, просты. Например, вычтя год рождения из года смерти, получают возраст смерти, который является главной независимой переменной для анализа смертности и продолжительности жизни. В других случаях построение признаков может быть не столь очевидным.

Общие алгоритмы машинного обучения

Существуют десятки алгоритмов машинного обучения, варьирующихся по сложности от линейной регрессии и логистической регрессии до глубоких нейронных сетей и ансамблей (так называют комбинации других моделей).

Вот некоторые из наиболее распространенных алгоритмов:

  • линейная регрессия, она же регрессия наименьших квадратов (для числовых данных);
  • логистическая регрессия (для бинарной классификации);
  • линейный дискриминантный анализ (для мультикатегорийной классификации);
  • деревья решений (для классификации и регрессии);
  • наивный байесовский классификатор (для классификации и регрессии);
  • метод k-ближайших соседей, он же k-NN (для классификации и регрессии);
  • обучение нейронной сети Кохонена, он же LVQ (для классификации и регрессии);
  • метод опорных векторов, он же SVM (для двоичной классификации);
  • «случайный лес» и методы бэггинга (для классификации и регрессии);
  • методы бустинга, включая AdaBoost и XGBoost, являются ансамблями алгоритмов, которые создают серию моделей, где каждая новая модель пытается исправить ошибки предыдущей модели (для классификации и регрессии).

А где нейронные сети и глубокие нейронные сети, о которых так много говорят? Они, как правило, требуют больших вычислительных затрат, поэтому их следует использовать только для специализированных задач, таких как классификация изображений и распознавание речи, для которых не подходят более простые алгоритмы. («Глубокая» означает, что в нейронной сети много слоев.)

Гиперпараметры для алгоритмов машинного обучения

Алгоритмы машинного обучения обучаются на данных, чтобы найти лучший набор весов для каждой независимой переменной, которая влияет на прогнозируемое значение или класс. Сами алгоритмы имеют переменные, называемые гиперпараметрами. Они называются гиперпараметрами, потому что, в отличие от параметров, управляют работой алгоритма, а не определяемыми весами.

Наиболее важным гиперпараметром часто является скорость обучения, которая определяет размер шага, используемый при поиске следующего набора весов для оптимизации. Если скорость обучения слишком высока, крутейший спуск может быстро сойтись на плато или к неоптимальной точке. Если скорость обучения слишком низкая, спуск может остановиться и никогда полностью не сойтись.

Многие другие распространенные гиперпараметры зависят от используемых алгоритмов. Большинство алгоритмов имеют параметры остановки, такие как максимальное число эпох, максимальное время выполнения или минимальное улучшение от эпохи к эпохе. Определенные алгоритмы имеют гиперпараметры, которые управляют формой их поиска. Например, классификатор случайного леса имеет гиперпараметры для минимальных выборок на лист, максимальной глубины, минимальных выборок при расщеплении, минимальной массовой доли для листа и проч.

Некоторые платформы машинного обучения предусматривают автоматическую настройку гиперпараметров. По сути, системе следует сообщить, какие гиперпараметры надо изменить, и, возможно, какую метрику требуется оптимизировать, и система просматривает эти гиперпараметры столько запусков, сколько ей будет позволено. (Например, Google Cloud hyperparameter tuning извлекает соответствующую метрику из модели TensorFlow, поэтому вам не нужно ее указывать.)

Есть три подхода в оптимизации гиперпараметров: Байесовская оптимизация, поиск по решетке и случайный поиск. Как правило, самым эффективным подходом оказывается Байесовская оптимизация.

Можно предположить, что настройка как можно большего количества гиперпараметров даст лучший ответ. Однако, это может быть очень дорого. С опытом приходит понимание, какие гиперпараметры имеют наибольшее значение для исследуемых в каждом конкретном случае данных и выбранных алгоритмов.

Автоматизированное машинное обучение

Есть только один способ узнать, какой алгоритм или ансамбль алгоритмов даст лучшую модель в каждом случае, – попробовать все. Если также попробуете все возможные нормализации и варианты функций, неминуем с комбинаторным взрывом.

Пытаться все сделать вручную нецелесообразно, поэтому поставщики инструментов машинного обучения приложили много усилий для выпуска систем класса AutoML (так называемое автоматизированное машинное обучение). Лучшие из них сочетают в себе настройку параметров, подбор алгоритмов и нормализацию данных. Гиперпараметрическую настройку лучшей модели (или моделей) часто оставляют на потом.

Таким образом, алгоритмы машинного обучения – всего лишь часть мозаики машинного обучения. В дополнение к выбору алгоритма (вручную или автоматически) нужно будет иметь дело с оптимизаторами, очисткой данных, выбором функций, нормализацией и (необязательно) настройкой гиперпараметров.

Когда вы обработаете все это и построите модель, которая будет работать с вашими данными, придет время использовать модель, а затем обновлять ее по мере изменения условий. Однако управление моделями машинного обучения – уже совсем другая история.

Поделитесь материалом с коллегами и друзьями

Как выбрать модель машинного обучения

Для начала рассмотрим некоторые руководящие принципы, которые используются при создании моделей:

  • Сбор данных (обычно в больших количествах).
  • Установление цели, гипотезы для проверки и сроков для достижения.
  • Проверка на наличие аномалий или выбросов.
  • Поиск недостающих данных.
  • Очистка данных на основе ограничений, целей и тестирования гипотез.
  • Выполнение статистического анализа и начальной визуализации.
  • Масштабирование, регуляризация, нормализация, разработка функций, случайная выборка и проверка данных для подготовки модели.
  • Обучение и тестирование данных.
  • Создание моделей на основе показателей классификации/регрессии для обучения с учителем или без него.
  • Установление базовой точности и проверка точности текущей модели на данных для обучения и тестирования.
  • Повторная проверка решения проблемы и полученных результатов.
  • Подготовка модели для развертывания и поставки продукта (AWS, Docker, Buckets, App, веб-сайт, ПО, Flask и т. д.).

Задачи машинного обучения подразделяются на обучение с учителем, без учителя, с частичным привлечением учителя и с подкреплением.

В процессе обучения с частичным привлечением учителя используются немаркированные данные для улучшения понимания структуры в целом. Другими словами, мы изучаем особенности только на основе небольшого набора для обучения, потому что он маркирован! Мы не используем преимущества тестового набора, содержащего множество ценной информации, из-за отсутствия маркировки. В результате нам необходимо найти способ обучения на основе большого количества немаркированных данных.

Обучение с подкреплением — это принятие подходящих мер для максимизации выгоды в определенной ситуации. Машина или робот обучаются, пробуя все возможные пути, а затем выбирают тот, который дает наибольшую выгоду с наименьшими трудностями.

Подходы

Ниже приведены подходы к выбору модели для решения задач машинного обучения/глубокого обучения:

  1. Несбалансированные данные достаточно распространены.

Обработку несбалансированных данных можно осуществить с помощью ресамплинга — использования выборки данных для повышения точности и подсчета погрешностей параметра совокупности. Методы ресамплинга используют технику вложенного ресамплинга.

Мы разделяем исходные данные на наборы для обучения и тестирования. После нахождения подходящих коэффициентов для модели с помощью первого набора мы применяем эту модель ко второму набору, чтобы обнаружить точность модели. Эта финальная точность, полученная перед применением ее к неизвестным данным, также называется набором для проверки и обеспечивает возможность получения более точных результатов.

Однако при дополнительном разделении набора для обучения на поднаборы и расчете их финальной точности, а затем многократного повторения этого процесса для множества поднаборов, можно добиться максимальной точности! Ресамплинг выполняется для повышения точности модели и разделяется на несколько способов, таких как начальная загрузка, перекрестная проверка, многократная перекрестная проверка и т. д.

2. Мы можем создавать новые функции с помощью метода главных компонент.

Этот метод также известен как PCA и помогает уменьшить размерность. Методы кластеризации очень распространены при обучении без учителя.

3. Мы можем предотвратить переобучение, недостаточное обучение, выбросы и шум с помощью методов регуляризации.

4. Нам необходимо устранить проблему “черного ящика”.

Для решения этой проблемы стоит рассмотреть стратегии для построения интерпретируемых моделей. Системы ИИ «черного ящика» для автоматического принятия решений в большинстве случаев основаны на машинном обучении на больших данных, отображающих функции пользователя в класс, который предсказывает поведенческие черты личности без объяснения причин.

Проблема заключается не только в отсутствии прозрачности, но и в возможном возникновении погрешностей, унаследованных алгоритмами от человеческих предрассудков, и сборе артефактов, скрытых в данных обучения, которые могут привести к неправильным решениям и неправильному анализу.

5. Понимание алгоритмов, не восприимчивых к выбросам.

Чтобы преодолеть отклонение от нормы, можно использовать произвольность в моделях или случайные леса.

Модели машинного обучения

  1. Первый подход к предсказанию постоянных значений: линейная регрессия — наиболее распространенный выбор, например, при предсказании стоимости жилья.
  2. Подходы бинарной классификации обычно схожи с моделями логистической регрессии. При возникновении проблемы классификации с двумя классами методы опорных векторов (SVM) — отличный способ получения наилучшего результата!
  3. Мультиклассовая классификация: случайные леса — предпочтительный выбор, однако SVM обладают схожими преимуществами. Случайные леса больше предназначены для мультикласса!

Для мультикласса нужно разбить данные на несколько задач бинарной классификации. Случайные леса отлично подходят для работы с несколькими числовыми и категориальными признаками, даже если они обладают различными масштабами. Это означает, что вы можете работать с исходными данными. SVM максимизируют отступ и основываются на концепции расстояния между различными точками. Остается только решить, действительно ли расстояние имеет значение!

В результате для категориальных признаков необходимо использовать единый код. Кроме того, в качестве предварительной обработки рекомендуется применять min-max или другое масштабирование. Для наиболее распространенных задач классификации случайные леса предоставляют вероятность принадлежности к этому классу, в то время как SVM предоставляют расстояние до границы, которую все же нужно преобразовать при необходимости в вероятность. SVM предоставляют опорные вектора — точки в каждом ближайшем к границе классе.

4. Деревья решений просты в использовании и понимании. Они реализуются с помощью таких моделей, как случайные леса или градиентный бустинг.

Читать еще:  Обучение копирайтингу с трудоустройством
Ссылка на основную публикацию
Adblock
detector