Openbravo-rus.ru

Образование по русски
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Machine learning обучение

Программа «Введение в машинное обучение»

ОНЛАЙН

Машинное обучение — один из самых востребованных разделов компьютерных наук. Именно с помощью машинного обучения сейчас удаётся строить рекомендательные системы для видео, прогнозировать спрос на тысячи товаров и автоматически обрабатывать огромные потоки писем в службе поддержки.

Основные темы курса:

  • Обучение с учителем — линейные модели, решающие деревья, композиции моделей на основе бэггинга и бустинга
  • Обучение без учителя — кластеризация и визуализация многомерных данных
  • Подготовка данных — отбор признаков, обработка категориальных и текстовых признаков

По итогам курса вы будете понимать основные постановки задач в машинном обучении, изучите основные виды моделей, будете уметь пройти путь от обработки сырых данных до построения и валидации модели.

Все темы сопровождаются практическими домашними заданиями на реальных данных.

Мы ожидаем, что слушатели владеют языком Python, который является де-факто стандартным инструментом для анализа данных: знают про условные операторы, циклы, функции, разбираются в числовых и строковых типах данных, умеют работать со списками и словарями, знают встроенные функции языка.

академических часов, включая 40 часов онлайн-работы с преподавателем.

рублей.
Оплату можно разбить на две части.
Для студентов, выпускников и слушателей основных и дополнительных программ НИУ ВШЭ предусмотрены скидки.

Начальные требования

Законченное высшее или среднее профессиональное образование. Слушателями также могут стать студенты, получающие высшее образование.

Документы для зачисления

  1. паспорта (3-4 страница, а также страница с адресом регистрации);
  2. диплома о высшем или среднем профессиональном образовании (первые две страницы);
  3. актуальной справки из вуза (если вы являетесь студентом);
  4. свидетельства о смене фамилии (если в паспорте и дипломе фамилия не совпадает).

Расписание занятий

Общий период обучения: 16 мая 22 июля 2020 г.

Один раз в неделю, онлайн

16 мая — 4 июля 2020 г. по субботам с 15:30 до 18:30.

8 июля — 22 июля 2020 г. по средам с 19:00 до 22:00.

Для прохождения курса вам понадобятся основы программирования на Python и знание базовых разделов высшей математики.

Преподаватели

Елена Кантонистова

Кандидат физико-математических наук, ведущий Data Scientist в консалтинговой компании UCG. Приглашенный преподаватель факультета компьютерных наук НИУ ВШЭ.

Окончила механико-математический факультет МГУ им. М.В. Ломоносова и Школу анализа данных Яндекса, направление «Компьютерные науки».

Как устроено обучение

Занятия проходят раз в неделю. Каждое занятие состоит из лекции и семинара. На лекции преподаватель объясняет, как работают методы машинного обучения, какие математика и алгоритмы за ними стоят. На семинаре слушатели работают с данными и решают реальные задачи с помощью Python и его библиотек. После каждого занятия выдаётся домашнее задание, которое поможет закрепить навыки.

16 бесплатных онлайн-курсов по машинному обучению

Популярная тенденция в сфере онлайн-образования — массовые открытые онлайн-курсы (Massive open online-courses, MOOC). Появились бесплатные курсы по машинному обучению и data science. Они доступны каждому и основаны на образовательных программах от ведущих университетов, например, МФТИ.

Большинство MOOC по машинному обучению доступны на английском языке и представлены на известных платформах онлайн-образования, таких как Coursera, Udacity, World Education University и edX.

Отдельно стоит отметить, что курсы Coursera доступны бесплатно только для прослушивания лекций. Для того, чтобы выполнять задания или получить сертификат по окончании курса, нужно оформить подписку или оплатить курс.

Видео-материалы и лекции курса можно получить бесплатно, для этого на странице курса внизу нужно нажать кнопку «прослушать курс», как показано на картинке:

Как бесплатно прослушать курсы по машинному обучению

В этой статье собраны бесплатные курсы по машинному обучению и Data Science на русском языке или с русскими субтитрами.

Введение в машинное обучение

Авторы: ВШЭ и Яндекс
Платформа: Coursera
Язык: русский

На курсе Константина Воронцова Введение в машинное обучение рассматриваются популярные задачи, решаемые с помощью машинного обучения — классификация, регрессия, кластеризация. Слушателю нужно знать об основных понятиях математики: функциях, производных, векторах, матрицах, желательно иметь базовые навыки программирования и быть знакомым с python.

Продолжительность: 35 часов

Машинное обучение и анализ данных

Авторы: МФТИ и Яндекс
Платформа: Coursera
Язык: русский

Специализация Машинное обучение и анализ данных включает 6 курсов. Осваиваются основные инструменты, необходимые в работе с большим массивом данных: современные методы классификации и регрессии, поиск структуры в данных, проведение экспериментов, построение выводов, фундаментальная математика, основы программирования на python.

Продолжительность: 8 месяцев (7 часов в неделю)

Python для анализа данных

Авторы: МФТИ, ФРОО, Mail.ru Group
Платформа: Coursera
Язык: русский

Курс Python для анализа данных ориентирован на решение практических задач. Студенты будут применять свои навыки программирования для построения предиктивных моделей, визуализации данных и работы с нейросетями.

Продолжительность: 25 часов

Введение в науку о данных

Автор: СПбГУ
Платформа: Coursera
Язык: русский

Курс Введение в науку о данных рассматривает постановку и решение типичных задач, с которыми может столкнуться в своей работе data scientist, подходы к сбору, анализу, обработке и визуализации массивов данных.

Продолжительность: 17 часов

Глубокое обучение в творчестве с TensorFlow

Автор: Google Magenta
Платформа: Kadenze
Язык: английский, русские субтитры

MOOC Использование глубокого обучения в творчестве с помощью TensorFlow расскажет о том, как строить алгоритмы глубокого обучения на основе сверточных, рекуррентных, генеративных нейросетей и применять их для создания творческих приложений.

Продолжительность: 60 часов

Data Science

Автор: Johns Hopkins University
Платформа: Courserа
Язык: английский, русские субтитры

В специализацию Data Science университета John Hopkins входят 10 курсов, включая сбор и сортировку данных, программирование на языке R, регрессионные модели, разработку продуктов для обработки данных и другие.

Продолжительность: 8 месяцев (5 часов в неделю)

Data science для руководителей

Автор: Johns Hopkins University
Платформа: Courserа
Язык: английский, русские субтитры

Data Science для руководителей — это ускоренная обучающая программа — 5 курсов, которые дают базовое понимание о том, что такое data science и как работать с проектами в этой сфере, собирать и развивать команду и даже лидерские качества.

Продолжительность: 40 часов

Нейронные сети

Автор: Институт биоинформатики
Платформа: Stepic
Язык: русский

Бесплатный курс Нейронные сети дает основы теории нейронных сетей и практики применения. Детальный разбор процесса создания и применения нейронных сетей. Алгоритмы, лежащие в основе нейросетей и множество практических задач.

Продолжительность: 33 часа

Программирование на Python

Автор: Институт биоинформатики
Платформа: Stepic
Язык: русский

На курсе Программирование на Python представлены базовые понятия программирования на python и большое количество практических задач. Решения будут проверяться автоматической системой.

Продолжительность: 22 часа

Алгоритмы: теория и практика. Методы

Автор: Computer Science Center
Платформа: Stepic
Язык: русский

Рассматриваются теоретические основы создания алгоритмов и особенности реализации на языках C++, Java и Python.

Продолжительность: 35 часов

Основы программирования на R

Автор: Институт биоинформатики
Платформа: Stepic
Язык: русский

На курсе Основы программирования на R изучаются основные типы данных и семантические правила, анализ и обработка данных.

Продолжительность: 19 часов

Анализ данных в R

Автор: Институт биоинформатики
Платформа: Stepic
Язык: русский

На курсе рассматриваются этапы статистического анализа на R — предварительная обработка данных, применение статистических методов анализа и визуализация данных.

Продолжительность: 21 час

Базы данных

Автор: СПбГУ
Платформа: Coursera
Язык: русский

В основе курса Базы данных изучение и применение языка SQL для создания, модификации объектов и управления данными в реляционных базах данных. Рассматриваются сферы применения NoSQL баз данных и современные подходы к обработке big data.

Читать еще:  It программист обучение

Продолжительность: 20 часов

От Excel до MySQL: способы анализа бизнес-данных

Автор: Duke University
Платформа: Coursera
Язык: английский, русские субтитры

В специализацию входят 5 курсов, которые демонстрируют, как использовать Excel, Tableau и MySQL для анализа данных, прогнозирования, создания моделей и визуализации данных для решения задач и улучшения бизнес-процессов.

Продолжительность: 8 месяцев (5 часов в неделю)

Линейная регрессия

Автор: СПбГУ
Платформа: Coursera
Язык: русский

В курсе Линейная регрессия разбираются основные методы описания взаимосвязей между количественными признаками, регрессионный анализ и построение моделей. Специальное место отводится операциям с матрицами. Курс ориентирован на людей, которые уже знакомы с базовыми понятиями анализа данных.

Продолжительность: 22 часа

Анализ данных

Автор: НГУ
Платформа: Coursera
Язык: русский

В специализацию Анализ данных Новосибирского государственного Университета входят 4 курса. Курсы содержат материалы по основам теории вероятностей и математической статистики, исследованию связей между признаками, построению прогнозов на основе регрессионных моделей, кластерному и статистическому анализу. Курсы разработаны совместно с 2GIS.

Продолжительность: 4 месяца (3 часа в неделю)

Профессия Data Scientist: машинное обучение

Вы научитесь создавать аналитические системы и использовать алгоритмы машинного обучения, освоите работу с нейросетями. Наполните портфолио и получите престижную профессию.

Записаться на курс

  • Длительность 13 месяцев
  • Помощь в трудоустройстве
  • 7 курсов в одной программе
  • Доступ к курсу навсегда

На рынке не хватает специалистов по Data Science

  • 2 300 компаний сейчас ищут специалистов в Data Science & Machine Learning
  • 80 000 рублей зарплата начинающего специалиста

Данные сайта hh.ru

Кому подойдёт этот курс

Новичкам в IT

Вы получите базовые навыки по аналитике, статистике и математике, которые откроют путь к карьере в Data Science и Machine Learning.

Программистам

Вы прокачаете свои знания и навыки в программировании на Python. Научитесь использовать алгоритмы машинного обучения, решать бизнес-задачи — и усилите портфолио мощными проектами.

Менеджерам и владельцам бизнеса

Научитесь использовать данные для построения прогнозов и оптимизации бизнес-процессов и переведёте компанию на новый уровень.

Чему вы научитесь

Программировать на Python

Визуализировать данные

Работать с библиотеками и базами данных

Применять нейронные сети для решения реальных задач

Строить модели машинного обучения

Писать рекомендательные системы

От первого урока к работе мечты

Студенты и выпускники Skillbox получают индивидуальную поддержку от Центра карьеры на протяжении всего обучения — от помощи с выбором профессии до выхода на работу мечты. Вот как это происходит.

С каждым уроком ваш профессиональный уровень растёт и вы можете планировать карьеру уже во время обучения.

Реакция потенциального работодателя зависит от того, как вы подаёте себя в резюме. Мы дадим советы по его составлению и поможем написать резюме, подающее вас лучшим образом.

Выбираете лучшую вакансию

Мы экономим ваше время — подбираем подходящие вакансии и договариваемся об интервью с работодателем. Вам нужно только пройти собеседование.

Начинаете карьеру мечты

Вы успешно проходите собеседование, выходите на работу и сразу начинаете выполнять задачи.

Записаться на курс или получить бесплатную консультацию

Похоже произошла ошибка. Попробуйте отправить снова или перезагрузите страницу.

Ваша заявка успешно отправлена

Как проходит обучение

Изучаете тему

В курсе — практические видеоуроки.

Выполняете задания

В том темпе, в котором вам удобно.

Работаете с наставником

Закрепляете знания и исправляете ошибки.

Защищаете дипломную работу

И дополняете ею своё портфолио.

Программа

Вас ждут 7 курсов с разным уровнем сложности, знание которых можно приравнять к году работы.

  1. Аналитика. Начальный уровень
  1. Введение.
  2. Основы Python: базовые структуры данных.
  3. Основы Python: циклы и условия.
  4. Основы Python: функции.
  5. Основы Python: классы и объекты.
  6. Основы Python: исключения.
  7. Библиотека NumPy. Часть 1.
  8. Библиотека NumPy. Часть 2.
  9. Библиотека pandas. Часть 1.
  10. Библиотека pandas. Часть 2.
  11. Визуализация данных с помощью matplotlib.
  12. Чтение и запись данных.
  13. Введение в SQL.
  14. Работа со строками.
  1. Основы статистики и теории вероятностей.
  1. Основные концепции Machine Learning (ML).
  2. Жизненный цикл ML-проекта.
  3. Регрессия.
  4. Классификация.
  5. Кластеризация
  6. Дополнительные техники.
  7. Знакомство с Kaggle.
  1. Базовые математические объекты и SymPy. Дроби и преобразования.
  2. Базовые математические объекты и SymPy. Необходимые функции и некоторые дополнительные объекты.
  3. Функции одной переменной, их свойства и графики.
  4. Интерполяция и полиномы.
  5. Аппроксимация и преобразования функций.
  6. Функции нескольких переменных, их свойства и графики.
  7. Линейные функции.
  8. Матрицы и координаты.
  9. Линейные уравнения.
  10. Производная функции одной переменной.
  11. Производная по направлению и градиент + частные производные.
  12. Линейная регрессия.
  13. Собственные векторы и значения. Определитель.
  14. Разложения матриц.
  1. Введение в нейронные сети.
  2. Обучение нейронных сетей.
  3. Нейронные сети на практике.
  4. Свёрточные нейросети для задачи классификации изображений.
  5. Семантическая сегментация. Часть 1. Слабая локализация и полносвёрточные нейросети (FCN).
  6. Семантическая сегментация. Часть 2. Продвинутые архитектуры FCN для семантической сегментации.
  7. Детектирование объектов.
  8. От дискриминативных моделей к генеративным. Style transfer.
  9. Генеративные состязательные сети.
  10. Введение в NLP.
  11. NLP на нейросетях. Рекуррентные нейросети, классификация текстов.
  12. NLP на нейросетях. Языковые модели, Attention, Transformer.
  13. Обучение с подкреплением. Q-Learning.
  14. Обучение с подкреплением. Deep Q-Learning.
  15. Ускорение и оптимизация нейронных сетей.
  16. Внедрение в DL моделей в Production.
  17. Рекомендательные системы.
  18. Вывод моделей машинного обучения в production, post production и мониторинг.
  1. Как стать первоклассным программистом.
  2. Как искать заказы на разработку.
  3. Личный бренд разработчика.
  4. Photoshop для программиста.
  5. Вёрстка email-рассылок. Советы на реальных примерах.
  6. The state of soft skills.
  7. Как мы создавали карту развития для разработчиков.
  8. Как общаться по email и эффективно работать с почтой.
  9. Повышение своей эффективности.
  10. Спор о первом языке программирования.
  11. Саморазвитие: как я не усидел на двух стульях и нашёл третий.
  12. Data-driven подход к продуктивности — инсайты из данных миллиона людей.
  1. IT Resume and CV.
  2. Job interview: questions and answers.
  3. Teamwork.
  4. Workplace communication.
  5. Business letter.
  6. Software development.
  7. System concept development and SRS.
  8. Design.
  9. Development and Testing.
  10. Deployment and Maintenance.

Уже учились на каком-то курсе из программы?

Скажите об этом менеджеру — за этот курс платить не придётся!

Получить полную программу курса и консультацию

Похоже произошла ошибка. Попробуйте отправить снова или перезагрузите страницу.

Machine Learning

Machine learning — множество математических, статистических и вычислительных методов для разработки алгоритмов, способных решить задачу не прямым способом, а на основе поиска закономерностей в разнообразных входных данных.

Что такое Machine Learning

Общий термин «Machine Learning» или «машинное обучение» обозначает множество математических, статистических и вычислительных методов для разработки алгоритмов, способных решить задачу не прямым способом, а на основе поиска закономерностей в разнообразных входных данных [1]. Решение вычисляется не по четкой формуле, а по установленной зависимости результатов от конкретного набора признаков и их значений. Например, если каждый день в течении недели земля покрыта снегом и температура воздуха существенно ниже нуля, то вероятнее всего, наступила зима. Поэтому машинное обучение применяется для диагностики, прогнозирования, распознавания и принятия решений в различных прикладных сферах: от медицины до банковской деятельности.

Типы и суть Machine Learning

Выделяют 2 типа машинного обучения [1]:

  1. Индуктивное или по прецедентам, которое основано на выявлении эмпирических закономерностей во входных данных;
  2. Дедуктивное, которое предполагает формализацию знаний экспертов и их перенос в цифровую форму в виде базы знаний.

Дедуктивный тип принято относить к области экспертных систем, поэтому общий термин «машинное обучение» означает обучение по прецедентам. Прецеденты или обучающая выборка – это наборы входных объектов и соответствующих им результатов. При этом не существует четкой формулы, которая аналитически описывает зависимость между результатами и входами. Например, какая погода будет завтра, если на протяжении недели дни были морозные, солнечные, с низкой влажностью воздуха, без ветра и осадков? При этом следует учесть еще множество параметров: географические координаты, рельеф местности, движение теплых и холодных фронтов воздуха и пр. Необходимо построить алгоритм, который выдаст достаточно точный результат для любого возможного входа. Точность результатов регулируется оценочным функционалом качества. Таким образом, решение формируется эмпирически, на основе анализа накопленного опыта. При этом обучаемая система должна быть способна к обобщению – адекватному отклику на данные, выходящие за пределы имеющейся обучающей выборки. На практике входные данные могут быть неполными, неточными и разнородными. Поэтому существует множество методов машинного обучения [2]. Можно сказать, что машинное обучение реализует подход Case Based Reasoning (CBR) — метод решения проблем рассуждением по аналогии, путем предположения на основе подобных случаев (прецедентов).

Читать еще:  Обучение картинки для презентации

Суть и смысл машинного обучения (Machine Learning)

Методы Machine Learning

Существует множество методов машинного обучения. Мы перечислим самые популярные, оставив их подробную классификацию специализированным ресурсам [1, 2, 3]. Выделяют 2 вида классического Machine Learning:

  1. С учителем (supervised learning), когда необходимо найти функциональную зависимость результатов от входов и построить алгоритм, на входе принимающий описание объекта и на выходе выдающий ответ. Функционал качества, как правило, определяется через среднюю ошибку ответов алгоритма по всем объектам выборки. К обучению с учителем относятся задачи классификации, регрессии, ранжирования и прогнозирования.
  2. Без учителя (unsupervised learning), когда ответы не задаются, и нужно искать зависимости между объектами. Сюда входят задачи кластеризации, поиска ассоциативных правил, фильтрации выбросов, построения доверительной области, сокращения размерности и заполнения пропущенных значений.

К неклассическим, но весьма популярным методам относят обучение с подкреплением, в частности, генетические алгоритмы, и искусственные нейронные сети. В качестве входных объектов выступают пары «ситуация, принятое решение», а ответами являются значения функционала качества, который характеризует правильность принятых решений (реакцию среды). Эти методы успешно применяются для формирования инвестиционных стратегий, автоматического управления технологическими процессами, самообучения роботов и других подобных задач [2].

Ниже на рисунке показана классификация наиболее часто используемых методов Machine Learning [3].

Классификация методов Machine Learning [3]

Средства реализации Machine Learning

Сегодня чаще всего для создания программ машинного обучения используются языки R, Python, Scala и Julia [4]. Они поддерживаются многими интегрированными средами разработки, в частности, R-Studio, R-Brain, Visual Studio, Eclipse, PyCharm, Spyder, IntelliJ IDEA, Jupyter Notebooks, Juno и др. [4]. На наших практических курсах мы научим вас успешной работе с этими инструментами, чтобы потом вы могли самостоятельно формировать наборы входных данных, строить эффективные алгоритмы для решения прикладных задач своей области: от нефтегазовой промышленности до биржевой аналитики. Выбирайте свой обучающий интенсив и приходите к нам на занятия!

Я хочу изучать AI и машинное обучение. С чего мне начать?

Когда-то я работал в Apple Store и мечтал изменить свою жизнь: вместо обслуживания техники Apple, мне хотелось ее создавать.

Я начал изучать машинное обучение (ML) и искусственный интеллект (AI), потому что на этом поприще творятся невероятные вещи. К тому же, эта область активно развивается.

Например, такое ощущение, что Google или Facebook каждую неделю выпускают новую технологию AI, чтобы ускорить работу или улучшить наш с вами пользовательский опыт.

И даже не будем затрагивать такую тему, как растущее число компаний по производству беспилотных автомобилей. Это отличная идея, но, к сожалению, я не поклонник вождения.

Несмотря на все вышеперечисленное, до сих пор не существует согласованного понятия искусственного интеллекта (AI).

Некоторые утверждают, что глубокое обучение можно рассматривать как AI, другие говорят, что это не AI, пока не пройден Тест Тьюринга.

Из-за отсутствия четкого определения, мой прогресс изрядно затормозился в начале. Было трудно разобраться в том, что не имело строгого определения.

С чего я начал?

Начнем с того, что, какое-то время назад, я и мои друзья запустили веб-стартап. Он провалился. В итоге мы сдались и не стали продолжать из-за бессмысленности идеи. Но во время работы над стартапом, я все больше и больше узнавал о таких вещах, как ML и AI.

Я не мог поверить в то, что компьютер может что-то учить для меня.

Через какое-то время я наткнулся на курс от Udacity под названием Deep Learning Nanodegree. На одном из промо-роликов я увидел забавного человека по имени Сирадж Раваль. Он заразил меня своей энергией и я записался на курс, несмотря на то, что совсем не отвечал основным требованиям (я ни разу не писал на Python).

За 3 недели до начала курса, я написал в Службу Поддержки Udacity, с вопросом об их политике возврата средств. Я боялся, что не смогу закончить курс.

Что же, мне не потребовался возврат, так как я закончил курс в установленный срок. Было действительно тяжело. Мои первые проекты были сданы с опозданием на четыре дня. Я шел вперед только из-за гордости от принятия участия в данном проекте.

Окончив Deep Learning Nanodegree, я гарантированно получал доступ к другим курсам Udacity, таким как AI Nanodegree, Self-Driving Car Nanodegree или Robotics Nanodegree.

Но я был растерян. Что делать дальше?

Мне нужен был учебный план. Я получил необходимые базовые знания с помощью Deep Learning Nanodegree, теперь пришло время выяснить, куда двигаться дальше.

Моя собственноручно созданная степень магистра по AI

В мои планы точно не входило возвращаться в университет. К тому же $100,000 на дороге не валяются, чтобы получить степень магистра.

Поэтому я сделал то, что сделал в самом начале своего пути — попросил своего наставника Google о помощи.

Я понял, что погрузился с головой в глубокое обучение без каких-либо знаний в этой области, вместо того, чтобы постепенно взбираться на верхушку айсберга под названием AI.

Просмотрев кучу курсов, я составил список самых интересных в Trello.

Я знал, что онлайн-курсы имеют высокий процент отсева, но я не собирался становиться частью этих отсеявшихся участников. У меня была миссия.

Чтобы привить себе ответственность, я решил делиться своими успехами и неудачами в Интернете. Помимо этого, там я мог бы найти других людей, которые заинтересованы в том же, что и я.

Я сделал доску Trello открытой и написал о своих начинаниях в блоге.

Мой учебный план немного изменился с тех пор, как я впервые написал его, но он по-прежнему актуален, и я посещаю доску Trello несколько раз в неделю, чтобы отслеживать свой прогресс.

Получение работы

Я следовал своему учебному плану вот уже более года, настало время на практике применить свои навыки. Поэтому я купил билет на самолет в один конец в США.

Мой план заключался в том, чтобы добраться до США и получить работу.

Однажды, девушка по имени Эшли написала мне на LinkedIn вот такое письмо: “Я видела твои посты и они на самом деле отличные, я думаю, тебе стоит встретиться с Майком”.

Я встретился с Майком и рассказал ему свою историю онлайн-обучения, о том как мне нравится Health Tech и о своих планах по переезду в США. Майк сказал мне: “Тебе лучше остаться тут на год или дольше, и посмотреть, что из этого выйдет. Кроме того, советую тебе встретиться с Кэмероном”.

Читать еще:  Обучение python книга

Я встретился с Кэмероном и у нас был практически такой же диалог, что и с Майком. Health Tech, онлайн-обучение, США. Кэмерон сказал мне: “Мы с командой работаем над некоторыми проблемами в области здравоохранения, почему бы тебе не прийти к нам в четверг?”.

Настал четверг. Мои нервы были на пределе. Чтобы успокоиться, я вспомнил слова какого-то мудрого человека: нервное состояние — это то же самое, что и воодушевленное. Я перестал нервничать и переключился на нужное, в данной ситуации, состояние.

Весь день я знакомился с командой Max Kelsen.

Две недели спустя, Ник — генеральный директор, Атон — ведущий инженер по машинному обучению и я пошли за кофе.

“Ты хотел бы присоединиться к команде?” — спросил меня Ник.

“Конечно” — ответил я.

Билет в США мне не понадобился.

Делитесь своей работой

Я знаю, что онлайн-обучение не является традиционной формой обучения. Все специальности, к которым я обращался, требуют степени магистра или, по крайней мере, какую-то техническую степень.

Никакой степени у меня, естественно, не было. Но у меня были навыки, которые я получил, благодаря множеству онлайн-курсов.

Во время обучения, я делился своей работой в Интернете. Мой GitHub был заполнен проектами, которые я сделал, профиль на LinkedIn я забросил и стал делиться своими знаниями через YouTube и статьи на Medium.

Я никогда не писал резюме для Max Kelsen, потому что они и так уже все про меня знали из моего профиля на LinkedIn.

Моя публичная деятельность и была моим резюме.

Независимо от того, учитесь ли вы онлайн или получаете степень магистра, наличие портфолио с примерами ваших работ — отличный способ показать себя.

Да, навыки по ML и AI востребованы, но это не значит, что вам ничего не придется делать, чтобы получить работу. Продемонстрировать навыки придется, потому что даже гениальный продукт не будет продаваться, если его не поместить на видное место.

Создайте себе профиль на GitHub, Kaggle, LinkedIn или просто заведите блог — люди должны о вас как-то узнать. Кроме того, иметь собственный уголок в Интернете — очень весело.

Как начать?

На каких платформах учиться? Какие курсы лучше выбрать?

Однозначного ответа нет. Учебный процесс у всех складывается по-разному. Некоторые люди лучше учатся по книгам, другие по видео.

Важнее не то, как начать, а почему вы это начинаете.

Начните с определения причины.

  • Почему вы хотите изучать эти навыки?
  • Вы хотите много зарабатывать?
  • Вы хотите создавать что-то интересное?
  • Вы хотите что-то изменить в нашем мире?

Опять же, нет единственно верной причины. Все они верны по-своему.

Наличие “почему” означает, что в трудные времена у вас будет к чему обратиться за помощью, чтобы напомнить себе, почему вы все это затеяли.

Определили свое “почему”? Хорошо. Пришло время перейти к самой трудной части.

Я могу рекомендовать только то, что сам пробовал.

Вот курсы, которые я окончил (по порядку):

  • Treehouse — Введение в Python
  • Udacity —Глубокое обучение и AI
  • Coursera — Глубокое обучение от Andrew Ng
  • fast.ai — Часть 1, скоро будет Часть 2

Я лучше воспринимаю визуальную информацию, то есть когда мне наглядно показывают и объясняют разные вещи. Все эти курсы заточены на таких как я.

Если вы абсолютный новичок, начните с вводных курсов по Python, а затем, когда станете более уверены в своих знаниях, переходите к data science, машинному обучению и AI.

Нужны ли углубленные знания по математике?

Самый высокий уровень математического образования, который я получил, был еще в старшей школе. Остальное я узнал через Khan Academy, поскольку эти знания были мне необходимы.

Существует большое количество мнений по поводу того, какой уровень знаний по математике нужно иметь, чтобы попасть в сферу машинного обучения и AI. Я поделюсь с вами своим мнением.

Если вы хотите применить знания ML и методы AI к какой-либо проблеме, вам не обязательно нужно иметь глубокое понимание математики, чтобы достичь хорошего результата.

Такие библиотеки, как TensorFlow и PyTorch позволяют создавать, при небольшом знании Python, современные модели, в то время как математика делает основную работу за кулисами.

Если же вы собираетесь углубиться в машинное обучение и AI, поступив в университет или куда-то еще, глубокие знания по математике играют наиважнейшую роль.

Лично я не собираюсь углубляться в математику и улучшать производительность алгоритма на 10%. Оставлю это людям, которые умнее меня.

Вместо этого, я буду использовать доступные мне библиотеки и манипулировать ими как мне угодно, чтобы решать проблемы по своему усмотрению.

Что на самом деле делает специалист по машинному обучению?

То, что специалист по машинному обучению делает на практике, может оказаться совсем не тем, о чем вы думаете.

Например, несмотря на распространенный факт, мы не работаем с роботами, у которых красные и страшные глаза.

Вот несколько вопросов, которые ежедневно задает себе специалист по ML:

  • Концепция — как можно использовать ML, чтобы узнать больше о проблеме?
  • Данные —сколько данных вам требуется? В каком формате они должны быть? Что вы делаете, когда данные отсутствуют?
  • Моделирование — какую модель следует использовать? Хорошо ли она работает с данными (переобучение)? Если работает плохо, то почему?
  • Производство — как вы можете использовать свою модель в производстве? Должна ли это быть онлайн-модель или она должна обновляться через определенные промежутки времени?
  • Будущее — что произойдет, если ваша модель сломается? Можно ли улучшить ее с большим количеством данных?

Я позаимствовал эти вопросы из замечательной статьи Рейчел Томас, одной из основательниц fast.ai.

Кроме того, я снял видео о том, чем мы занимаемся по понедельникам в Max Kelsen.

Нет однозначно верного пути

Не существует правильного или неправильного способа попасть в сферу ML или AI.

Самое прекрасное в этой сфере то, что у нас есть доступ к одним из передовых технологий в мире, и все, что нам нужно сделать — это научиться правильно их использовать.

Вы можете начать с изучения Python.

Вы можете начать с изучения исчисления и статистики.

Вы можете начать с изучения философии принятия решений.

Машинное обучение и AI привлекает меня именно тем, что тут сходится так много разнообразных областей.

Чем больше я узнаю, тем больше еще остается узнать. И это подстегивает меня двигаться вперед.

Когда мой код не запускается или я не понимаю концепцию, я временно прекращаю работу. Я сдаюсь, позволяя себе уйти от проблемы, немного вздремнуть или сходить на прогулку. Когда я возвращаюсь со свежей головой, я смотрю на проблему под другим углом. Воодушевление возвращается и я продолжаю учиться.

Начните свое обучение с того, что вам больше всего по душе. Если это приведет вас в тупик, вернитесь назад и выберите другой путь.

Компьютеры умны, но они все еще не могут учиться самостоятельно. Им нужна ваша помощь.

Ссылка на основную публикацию
Adblock
detector